If r.v. $X\sim \operatorname{Gamma}(a+b,\lambda)$ and $Y\sim \operatorname{Beta}(a,b)$ are independent, their product $XY\sim \operatorname{Gamma}(a,\lambda)$
I am not asking how to prove this, but how to interpret this result. Maybe a physical situation that implies the result?
For clarity and "proof of work", I will give two ways of proving this.
Proof 1 - Change of variables
Let $U=XY$ and $V=X$, the Jacobian $|J|=1/V$.
$Y=U/V\leq1 \Rightarrow V\geq U$.
$f_U(u)=\int_u^{+\infty}f_{U,V}(u,v)dv=\int_u^{+\infty}f_{X,Y}(v,u/v)|J|dv=\int_u^{+\infty}e^{-\lambda v}u^{a-1}(v-u)^{b-1}dv$
Let $t=u-v$, $f_U(u)=\int_0^{+\infty}t^{b-1}e^{-\lambda t}u^{a-1}e^{-\lambda u}dt=u^{a-1}e^{-\lambda u}$.
Therefore, $U\sim \operatorname{Gamma}(a,\lambda)$.
Proof 2
A well-known relation between Gamma distribution and Beta distribution is as follows
If r.v. $X\sim \operatorname{Gamma}(a,\lambda)$ and $Y\sim \operatorname{Gamma}(b,λ)$ are independent, then $U:=X+Y\sim \operatorname{Gamma}(a+b,λ)$ and $V:=\frac{X}{X+Y}\sim \operatorname{Beta}(a,b)$ and they are independent.
The proof for this is again using the change of varibles and can be found in the other question.
Using this fact, we immediately get that $UV=X\sim \operatorname{Gamma}(a,\lambda)$.