This problem featuring the trilogarithm was posted online $$\int _0^1\frac{\text{Li}_3\left(x\right)}{x\sqrt{1-x}}\:\mathrm{d}x$$ they did not leave a result and I wonder if a closed form exists.
What I tried in order to evaluate it was using that $$\int _0^1\frac{\text{Li}_3\left(x\right)}{x\sqrt{1-x}}\:\mathrm{d}x=\sum _{n=1}^{\infty }\frac{1}{n^3}\int _0^1\frac{x^{n-1}}{\sqrt{1-x}}\:\mathrm{d}x$$ $$=2\sum _{n=1}^{\infty }\frac{1}{n^3}\int _0^{\frac{\pi }{2}}\sin \left(x\right)^{2n-1}\:\mathrm{d}x=2\sum _{n=1}^{\infty }\frac{\left(2n-2\right)!!}{n^3\left(2n-1\right)!!}$$ I am not sure how to proceed further with this method. Also $$\int _0^1\frac{\text{Li}_3\left(x\right)}{x\sqrt{1-x}}\:\mathrm{d}x=2\int _0^1\frac{\text{arctanh} \left(\sqrt{1-x}\right)\text{Li}_2\left(x\right)}{x}\:\mathrm{d}x$$ $$=-\int _0^1\frac{\log \left(\frac{1-\sqrt{1-x}}{1+\sqrt{1-x}}\right)\text{Li}_2\left(x\right)}{x}\:\mathrm{d}x$$ but this doesn't seem promising either. How else can this problem be approached? Does a closed form exist? I'd appreciate any help. Thanks!
MultipleZetaValuesgives: $$-\frac{1}{360} \left(19 \pi ^4\right)+\frac{2}{3} \pi ^2 \log ^2(2)+\frac{\log ^4(2)}{3}+8 \text{Li}_4\left(\frac{1}{2}\right)$$ – Mariusz Iwaniuk Apr 22 '25 at 07:33