5

Let $\mathcal{H}$ be an infinite-dimensional Hilbert space, and let $\mathcal{H}_1, \mathcal{H}_2 \subset \mathcal{H}$ be two closed subspaces such that $\mathcal{H}_1 \cap \mathcal{H}_2 = \{0\}$. Suppose $\mathcal{K}_1 \subset \mathcal{H}_1$ and $\mathcal{K}_2 \subset \mathcal{H}_2$ are proper, non-trivial, closed subspaces.

Is it possible to find such a quadruple $(\mathcal{H}_1, \mathcal{K}_1, \mathcal{H}_2, \mathcal{K}_2)$ corresponding to $\mathcal H$ such that: $$ \overline{\text{span}(\mathcal{K}_1 \cup \mathcal{K}_2)} = \overline{\text{span}(\mathcal{H}_1 \cup \mathcal{H}_2)}? $$ In other words, can proper closed subspaces of $\mathcal{H}_1$ and $\mathcal{H}_2$ together generate a dense subspace in closer linear span of $\mathcal H_1\cup \mathcal H_2$?

I know an example where this construction does not work, but I have not been able to prove the general statement that $$ \overline{\text{span}(\mathcal{K}_1 \cup \mathcal{K}_2)} \subsetneq \overline{\text{span}(\mathcal{H}_1 \cup \mathcal{H}_2)} $$ always holds whenever $\mathcal{K}_1 \subsetneq \mathcal{H}_1$ and $\mathcal{K}_2 \subsetneq \mathcal{H}_2$ are proper, non-trivial, closed subspaces.

Here is a concrete counterexample where the span of $\mathcal{K}_1 \cup \mathcal{K}_2$ fails to be dense in the span of $\mathcal{H}_1 \cup \mathcal{H}_2$.

Let $\mathcal{H} = \ell^2(\mathbb{N})$, and define: $$\mathcal H_1= \overline{\text{span}\{e_{2n}: n\in \mathbb N\}},~\mathcal H_2= \overline{\text{span}\{e_{2n+1}: n\in \mathbb N\}}$$ $$\mathcal K_1= \overline{\text{span}\{e_{2n+2}: n\in \mathbb N\}},~\mathcal K_2= \overline{\text{span}\{e_{2n+3}: n\in \mathbb N\}}.$$

Also, I am currently looking for an explicit example of such a quadruple $(\mathcal{H}_1, \mathcal{K}_1, \mathcal{H}_2, \mathcal{K}_2)$ corresponding to a given infinite-dimensional Hilbert space $\mathcal{H}$, where $$ \overline{\text{span}(\mathcal{K}_1 \cup \mathcal{K}_2)} = \overline{\text{span}(\mathcal{H}_1 \cup \mathcal{H}_2)}, $$ despite $\mathcal{K}_1 \subsetneq \mathcal{H}_1$ and $\mathcal{K}_2 \subsetneq \mathcal{H}_2$ being proper, non-trivial, closed subspaces.

If you have any insights or ideas that could lead to such an example, I would greatly appreciate your help. Thank you for your time and support!

abcdmath
  • 2,225

1 Answers1

2

The following construction shows that such a quadruple does indeed exist. Some of the ideas in this proof are inspired by the content from Section 1.15 of Introduction to Hilbert Space and the Theory of Spectral Multiplicity (Second Edition) by Halmos. Also see here.

Let $\mathcal{H}$ be any separable infinite-dimensional Hilbert space. Let $(e_{n})_{n\in\mathbb{N}}$ and $(f_{n})_{n\in\mathbb{N}}$ be orthonormal sequences in $\mathcal{H}$ such that $(e_{n}, f_{m} )_{\mathcal{H}} = 0$ for all $m,n\in\mathbb{N}$ and $\overline{{\rm span}}(\{e_{n} : n\in\mathbb{N} \} \cup\{ f_{n} : n\in\mathbb{N}\}) = \mathcal{H}$. Define $g_{n} := (1 - \tfrac{1}{n^{4}})^{\tfrac{1}{2}} e_{n} + \tfrac{1}{n^{2}} f_{n}$ for each $n\in\mathbb{N}$. It is straightforward to check that $(g_{n})_{n\in\mathbb{N}}$ is an orthonormal sequence. Define $u := \sum_{n\in\mathbb{N}} \tfrac{1}{n^{2}}f_{n}$ and $v := \sum_{n\in\mathbb{N}} \tfrac{1}{n} f_{n}$, where both sums converge (unconditionally) in $\mathcal{H}$ since $(\tfrac{1}{n^{2}})_{n\in\mathbb{N}}$ and $(\tfrac{1}{n})_{n\in\mathbb{N}}$ both belong to $\ell^{2}$.

Define $\mathcal{K}_{1} := \overline{{\rm span}}\{e_{n} : n\in\mathbb{N}\}$, $\mathcal{H}_{1} := \mathcal{K}_{1} + \mathbb{K}v$, $\mathcal{K}_{2} := \overline{{\rm span}}\{g_{n} : n\in\mathbb{N}\}$ and $\mathcal{H}_{2} := \mathcal{K}_{2} + \mathbb{K}u$. It is immediate that $\mathcal{K}_{1}$ and $\mathcal{K}_{2}$ are closed subspaces of $\mathcal{H}$, hence so are their finite-dimensional extensions $\mathcal{H}_{1}$ and $\mathcal{H}_{2}$. We claim the following properties hold. \begin{equation} \mathcal{K}_{1} \text{ is a proper closed subspace of } \mathcal{H}_{1} , \tag{1} \end{equation} \begin{equation} \mathcal{K}_{2} \text{ is a proper closed subspace of } \mathcal{H}_{2} , \tag{2} \end{equation} \begin{equation} \mathcal{H}_{1}\cap \mathcal{H}_{2} = \{0\}, \text{ and} \tag{3} \end{equation} \begin{equation} \overline{{\rm span}}(\mathcal{K}_{1} \cup \mathcal{K}_{2}) = \overline{{\rm span}}(\mathcal{H}_{1} \cup \mathcal{H}_{2}) = \mathcal{H} . \tag{4} \end{equation}

We first show $(4)$. With the inclusion $\overline{{\rm span}}(\mathcal{K}_{1} \cup \mathcal{K}_{2}) \subseteq \overline{{\rm span}}(\mathcal{H}_{1} \cup \mathcal{H}_{2})$ in mind it is sufficient to show $\overline{{\rm span}}(\mathcal{K}_{1} \cup \mathcal{K}_{2}) = \mathcal{H}$. By the definition of $\mathcal{K}_{1}$ we have $e_{n} \in \mathcal{K}_{1} \subseteq \overline{{\rm span}}(\mathcal{K}_{1} \cup \mathcal{K}_{2})$ for each $n\in\mathbb{N}$. Moreover, we also have $f_{n} = - n^{2} (1 - \tfrac{1}{n^{4}})^{\tfrac{1}{2}} e_{n} + n^{2} g_{n} \in \mathcal{K}_{1} + \mathcal{K}_{2} \subseteq \overline{{\rm span}}(\mathcal{K}_{1} \cup \mathcal{K}_{2})$ for each $n\in\mathbb{N}$. It follows that $\mathcal{H} = \overline{{\rm span}}(\{e_{n} : n\in\mathbb{N} \} \cup\{ f_{n} : n\in\mathbb{N}\}) \subseteq \overline{{\rm span}}(\mathcal{K}_{1} \cup \mathcal{K}_{2})$. This shows $(4)$.

We next show that $u\not\in \mathcal{K}_{1} + \mathcal{K}_{2}$ and $v\not\in \mathcal{K}_{1} + \mathcal{K}_{2}$. Once this is done, we obtain $v\in \mathcal{H}_{1}\setminus \mathcal{K}_{1}$ and $u\in \mathcal{H}_{2}\setminus \mathcal{K}_{2}$, which show $(1)$ and $(2)$ respectively.

Suppose for a contradiction that $u\in \mathcal{K}_{1} + \mathcal{K}_{2}$. Write $u = x + y$ where $x\in \mathcal{K}_{1}$ and $y\in \mathcal{K}_{2}$. Let $n\in\mathbb{N}$. Observe that $f_{n}\in \mathcal{K}_{1}^{\perp}$, $(g_{n}, f_{n})_{\mathcal{H}} = \tfrac{1}{n^{2}}$ and $(g_{m}, f_{n})_{\mathcal{H}} = 0$ for all $m\in\mathbb{N}\setminus\{n\}$. Hence we have \begin{align*} \tfrac{1}{n^{2}} = (u, f_{n})_{\mathcal{H}} = (x + y, f_{n})_{\mathcal{H}} = (y, f_{n})_{\mathcal{H}} &= (\sum_{k\in\mathbb{N}} (y, g_{k})_{\mathcal{H}} g_{k}, f_{n} )_{\mathcal{H}} \\ &= (y, g_{n})_{\mathcal{H}} (g_{n}, f_{n})_{\mathcal{H}} = \tfrac{1}{n^{2}} (y, g_{n})_{\mathcal{H}} . \end{align*} This implies $(y, g_{n})_{\mathcal{H}} = 1$ for all $n\in\mathbb{N}$ which contradicts the Bessel inequality. Hence $u\not\in \mathcal{K}_{1} + \mathcal{K}_{2}$.

Similarly, suppose for a contradiction that $v\in \mathcal{K}_{1} + \mathcal{K}_{2}$. Write $v = x + y$ where $x\in \mathcal{K}_{1}$ and $y\in \mathcal{K}_{2}$. For each $n\in\mathbb{N}$ we have \begin{align*} \tfrac{1}{n} = (v, f_{n})_{\mathcal{H}} = (x + y, f_{n})_{\mathcal{H}} = (y, f_{n})_{\mathcal{H}} &= (\sum_{k\in\mathbb{N}} (y, g_{k})_{\mathcal{H}} g_{k}, f_{n} )_{\mathcal{H}} \\ &= (y, g_{n})_{\mathcal{H}} (g_{n}, f_{n})_{\mathcal{H}} = \tfrac{1}{n^{2}} (y, g_{n})_{\mathcal{H}} . \end{align*} This implies $(y, g_{n})_{\mathcal{H}} = n$ for all $n\in\mathbb{N}$ which contradicts the Bessel inequality. Hence $v\not\in\ \mathcal{K}_{1} + \mathcal{K}_{2}$.

All that is left is to show $(3)$. We do this now. Let $z\in \mathcal{H}_{1}\cap \mathcal{H}_{2}$. Write $z = \alpha v + x = \beta u + y$ with $\alpha , \beta \in \mathbb{K}$, $x\in \mathcal{K}_{1}$ and $y\in \mathcal{K}_{2}$. For each $n\in\mathbb{N}$ we have \begin{align*} \tfrac{\alpha}{n} = \alpha (v, f_{n})_{\mathcal{H}} &= (\alpha v + x, f_{n})_{\mathcal{H}} \\ &= (\beta u + y, f_{n})_{\mathcal{H}} \\ &= \beta (u, f_{n})_{\mathcal{H}} + (\sum_{k\in\mathbb{N}} (y, g_{k})_{\mathcal{H}} g_{k}, f_{n} )_{\mathcal{H}} \\ &= \beta (u, f_{n})_{\mathcal{H}} + (y, g_{n})_{\mathcal{H}} (g_{n}, f_{n})_{\mathcal{H}} = \tfrac{1}{n^{2}} (\beta + (y, g_{n})_{\mathcal{H}}) . \end{align*} It follows that $(y, g_{n})_{\mathcal{H}} = \alpha n - \beta$ for all $n\in\mathbb{N}$. By the Bessel inequality the sequence $(\alpha n - \beta )_{n\in\mathbb{N}}$ converges to $0$. Hence we must have $\alpha = 0$ and $\beta = 0$. Consequently, we have $(y, g_{n})_{\mathcal{H}} = 0$ for all $n\in\mathbb{N}$ and deduce from the definition of $\mathcal{K}_{2}$ that $y = 0$, so that $z = 0\cdot u + 0 = 0$. Since $0\in \mathcal{H}_{1}\cap \mathcal{H}_{2}$, we deduce $\mathcal{H}_{1} \cap \mathcal{H}_{2} = \{0\}$ and this shows $(4)$.

Dean Miller
  • 7,015
  • 1
  • 7
  • 34