Without using the fundamental theorem of finite abelian groups, show that, if $G$ is a finite abelian group of order 8, then $G$ is isomorphic to one of $\mathbb{Z} / 8\mathbb{Z}$, $\mathbb{Z} / 4\mathbb{Z} \times \mathbb{Z} / 2\mathbb{Z}$, or $\mathbb{Z} / 2\mathbb{Z} \times \mathbb{Z} / 2\mathbb{Z} \times \mathbb{Z} / 2\mathbb{Z}$
I started by choosing some element $e \neq g \in G$. By Lagrange's theorem, the order of $g$ is either $2$, $4$, or $8$. If the order of $g$ is $8$, then $\langle g \rangle = G$, and so $G \cong \mathbb{Z} / 8 \mathbb{Z}$. I'm not totally sure what to do next. If the order of $g$ is $2$, do I consider $G / \langle g \rangle$ and show that this quotient is isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$?