I don't know much about that topic and googl Schläfli yields extremely complex Ramanujan results; but with some help of Mathematica
$$
f(\text{q$\_$})= \left\{\frac{u^3}{v^3}+\frac{v^3}{u^3},2 \left(u^2 v^2-\frac{1}{u^2 v^2}\right)\right\} \\
\text{/.}\, \left\{u:\to \frac{\prod _{k=0}^{\infty } \left(q^{2 k+1}+1\right)}{\sqrt[4]{2} \sqrt[24]{q}},v:\to \frac{\prod _{k=0}^{\infty } \left(p^{2 k+1}+1\right)}{\sqrt[4]{2} q^{5/24}}\right\} \text{/.}\, \left\{p\to q^5\right\}
$$
it yields in Q-Pochhammer symbols
$$\left\{ \ \frac{q \left(-q;q^2\right)_{\infty }^6+\left(-q^5;q^{10}\right)_{\infty }^6}{\sqrt{q} \left(-q;q^2\right)_{\infty }^3 \left(-q^5;q^{10}\right)_{\infty }^3},\quad \frac{\left(-q;q^2\right)_{\infty }^4
\left(-q^5;q^{10}\right)_{\infty }^4-4 q}{\sqrt{q} \left(-q;q^2\right)_{\infty }^2
\left(-q^5;q^{10}\right)_{\infty }^2} \ \right\}$$
The plot is showing equality up to $q\lt 1$
g[q_] = Assuming[0 < q < 1/2,
FunctionExpand@FullSimplify[Numerator@
Together[Subtract @@ f[q]]]]
$$q \left(-q;q^2\right)_{\infty }^6+\left(-q^5;q^{10}\right)_{\infty }^6+4 q \left(-q^5;q^{10}\right){}_{\infty } \left(-q;q^2\right){}_{\infty }-\left(-q^5;q^{10}\right)_{\infty }^5 \left(-q;q^2\right)_{\infty }^5$$
g[q] /. {QPochhammer[-q, q^2] -> a, QPochhammer[-q^5, q^10] -> b}
-a^5 b^5 + b^6 + a^6 q + 4 a b q
The plot indicates the numerator $g(q)$ to be zero in $(0\lt q\lt 1)$ (for some random rational points), but Mathematica cannot solve that problem algebraically, no wonder if one has a look at the google results.
Schlafli's form of elliptic modular equation of weight 5