Too long for a comment: We may consider the last digit of powers:
$A=6^n+n^6$
$n$ may end to following digit:
$n\equiv (1, 2, 3, 4, 5, 6, 7, 8, 9)\bmod 10$
Corresponding the last digits for $n^6$ are:
$n^6\equiv(1, 4, 9, 6, 5, 6, 9, 4, 1)\bmod 10$
Considering the fact that the last digit of any power of $6$ is $6$, the last digits of $A$ are:
$A\equiv [7, 10(\equiv 0), 15(\equiv 5), 12(\equiv 2), 11(\equiv 1), 12(\equiv 2), 15(\equiv 5), 10(\equiv 0), 7]\bmod 10 $
That is if the last digit of $n$ are numbers $2, 3, 4, 6, 7, 8 $ then the last digit of $A$ are $0, 5, 2, 2, 5, 0$
which means $A$ is composite.
Now we have to concentrate on when the last digit of $A$ are $7$ and $1$ .
1): Last digit $7$ represent when the last digit of $n$ is $1$ or $9$.
2): Last digit $1$ represent when the last digit of $n$ is $5$
Numerical experiment shows:
$n=11\rightarrow A=364568617= 52081231\times 7$
$n=9\rightarrow A=10607137=1515591\times 7$
$n=5\rightarrow A=23401=3343\times 7$
For $n=5$ we may write:
$(7-1)^5+(7-2)^6\equiv -1\bmod 7+2^6\bmod 7 \equiv 63 \bmod \equiv 0\bmod 7$
For $n=11$ we may write :
$(7-1)^{11}\equiv -1\bmod 7$
$11^6\equiv 1\bmod 7$
$\Rightarrow A\equiv 0\bmod 7$
For $n=9$ we may write :
$(7-1)^{9}\equiv -1\bmod 7$
$9^6\equiv 1\bmod 7$
$\Rightarrow A\equiv 0\bmod 7$
For $n=7$ we have:
$6^7+7^6=79517\times 5$
We may write:
$(5+1)^7\equiv 1\bmod 5$
$(7+2)^6\equiv 2^6=64\equiv -1\bmod 5$
$\Rightarrow A\equiv 0\bmod 5$
This holds for all odd powers of $7$:
$(7^{2k+1})^6=(7^6)^{2k+1}\equiv (-1)^{2k+1}\equiv -1\bmod 5$
$(5+1)^{7^{2k+1}}\equiv 1\bmod 5$
So: $A\equiv 0\bmod 5$