This limit:
$\lim_{x\to -\infty}\frac{2x+7}{\sqrt{x^2+2x-1}}$
is supposed to be equal to -2. My textbook and Wolfram Alpha both state that. However, I can't seem to get same exact result.
Here's what I tried to do:
$$\lim_{x\to -\infty}\frac{2x+7}{\sqrt{x^2+2x-1}} = \lim_{x\to-\infty}\frac{2x+7}{\sqrt{x^2+2x-1}} \cdot \frac{1 \over x}{1 \over x} = \lim_{x\to -\infty}\frac{\frac{x}{x}\cdot(2+\frac7x)}{\sqrt{\frac{x^2}{x^2}\cdot(1+\frac{2}{x}-\frac{1}{x^2})}} = \frac{1\cdot(2+0)}{\sqrt{1\cdot(1+0-0)}} =\frac{2}{\sqrt{1}}=2$$
Where did I make a mistake?