\begin{align}\lim_{n\to\infty}\sqrt[n]{\frac{\ln\left(\left(1+\frac{1}{n^2}\right)^{n^2}\right)}{n^2}}&=\lim_{n\to\infty}\sqrt[n]{\frac{\frac{1}{n}\ln\left(\left(1+\frac{1}{n^2}\right)^{n^2}\right)}{n}}\\ &=\lim_{n\to\infty}\sqrt[n]{\frac{\ln\left(\sqrt[n]{\left(1+\frac{1}{n^2}\right)^{n^2}}\right)}{n}}\\&= \lim_{n\to\infty}\sqrt[n]{\frac{\ln\left(\sqrt[n]{e}\right)}{n}}\\&=\lim_{n\to\infty}\sqrt[n]{\frac{\ln(1)}{n}}\\&=\lim_{n\to\infty} \frac{\sqrt[n]{0}}{\sqrt[n]{n}}= 0\end{align}
Where is the mistake? It should be $1$ according to the computer