As suggested by @Tina, let me focus on a simple case:
Let $F\leqslant E$ be a field extension, $S\subseteq E$ be a finite set whose elements are algebraic over $F$. Then the field extension
$F\leqslant F(S)$ can be decomposed into a tower
of simple extensions:
$$ F\leqslant F(s_1)\leqslant F(s_1)(s_2)\leqslant \dots \leqslant F(s_1)\dots(s_n)$$
Then by tower theorem:
For (not necessarily finite) field extensions $F\leqslant K\leqslant L$, if $F\leqslant K$ has a basis $\{\alpha_i:i\in I\}$, $K\leqslant L$ has a basis $\{\beta_j:j\in J \}$, then $F\leqslant L$ has a basis $\{\alpha_i\beta_j: (i,j)\in I\times J\}$.
We know that $F\leqslant F(S)$ has a basis of the form:
$$ \left\{s_1^{\alpha_1}\cdots s_n^{\alpha_n}: \alpha_i\leqslant N_i-1\right\}$$
where $N_i$ is the degree of the extension $F(s_1,\dots,s_{i-1})\leqslant F(s_1,\dots,s_i)$.
Warning: If $s$ is not algebraic over $F$, then $\{1,s,s^2,\dots,\}$ is a basis of $F[s]$, but not a basis of $F(s)$.
It uses the existence and uniqueness of a partial fraction decomposition for rational functions.
– Zoudelong Mar 27 '25 at 13:07