The "coefficients" $\,\alpha,\beta\,$ in these linear operators are linear scale-by $\:\!f\:\!$ operations associated to a function $\:\!f,\,$ i.e. $\,{\bf f}(g) := f g\,$ (we write the operation in bold to distinguish it from the function). Below are the commutation rules for a shift operator $\bf E$ (and a derivative $\bf D$ for comparison).
$\!\begin{align}{\bf Lemma} \qquad
\color{#0a0}{{\bf D}(fg) = f {\bf D}g + ({\bf D}f)g}\ \Rightarrow\ &\color{#c00}{\bf D\,f = f\,D\!+\!f'},\, \ f' := {\bf D}f\\[.4em]
\color{#0a0}{{\bf E}(fg) = {\bf E}f\,{\bf E}g}\ \Rightarrow\ &\color{#c00}{\bf E\,f \:\!= f^{\dagger}E},\qquad\ f^{\dagger} := {\bf E}f\\
\end{align}$
by $\ (\color{#c00}{{\bf Df}})g = {\bf D}({\bf f}(g)) = \color{#0a0}{{\bf D}(fg) = f\, {\bf D}g + f' g} = ({\color{#c00}{\bf f D + f'}})g$
$\ \ \ \ \ \ ({\color{#c00}{\bf Ef}})g = {\bf E}({\bf f}(g)) = \color{#0a0}{{\bf E}(fg) = {\bf E}f\:{\bf E}\:\!g} = f^{\dagger}{\bf E}g = (\color{#c00}{{\bf f^{\dagger}}{\bf E}})g$