I need small help in evaluating $$\int\left(\frac{x^{4}+81}{\sqrt{x^{2}+9}}\right)dx$$
My Approach
Let’s assume
$$I=\int\left(\frac{x^{4}+81}{\sqrt{x^{2}+9}}\right) dx$$
$$\implies I=\int\left(\frac{(x^{2}+9)^{2}-18x^{2}}{\sqrt{x^{2}+9}}\right)dx$$
$$\implies I=\int (x^{2}+9)^{\frac{3}{2}}dx-18\int\left(\frac{x^{2}}{\sqrt{x^{2}+9}}\right)dx$$
$$\implies I=\int (x^{2}+9)^{\frac{3}{2}}dx-18\int\left(\frac{(x^{2}+9)-9}{\sqrt{x^{2}+9}}\right)dx$$
$$\implies I=\int({x^{2}+9})^{\frac{3}{2}}dx-18\int\left(\sqrt{x^{2}+9}\right)dx+162\int\left(\frac{1}{\sqrt{x^{2}+9}}\right)dx$$
Let's Assume $$I_{1}=\int({x^{2}+9})^{\frac{3}{2}}dx$$ $$I_{2}=\int\left(\sqrt{x^{2}+9}\right)dx$$ $$I_{3}=\int\left(\frac{1}{\sqrt{x^{2}+9}}\right)dx$$
Case-$1$:
For Evaluating $$I_{3}=\int\left(\frac{1}{\sqrt{x^{2}+9}}\right)dx$$ I just have to substitute $x=3\tan\theta$ and finally the integral will become $$I_{3}=\int\left(\frac{3\sec^{2}\theta}{3\sec\theta}\right)d\theta$$ $$\implies I_{3}=\int(\sec\theta)d\theta$$ $$\implies I_{3}=\ln|\sec\theta+\tan\theta|+C_{1}$$
My Doubt
I really don't know how to evaluate the integrals $$I_{1}=\int(x^{2}+9)^{\frac{3}{2}}dx$$ and $$I_{2}=\int\left(\sqrt{x^{2}+9}\right)dx$$
Please Help me out with Evaluating $I_{1}$ and $I_{2}$