[This is just a restatement of the problem.]
Let ${ V, W, X }$ be finite dimensional ${ \mathbb{C} - }$vector spaces. Let ${ b : V \times W \to X }$ be a bilinear map. Let ${ b }$ be strongly nondegenerate, that is
$${ b(v, w) = 0 \implies v = 0 \text{ or } w = 0 . }$$
We are to show
$${ \text{To show:} \quad \dim(V) + \dim(W) \leq \dim(X) + 1 . }$$
Fix bases ${ \mathscr{V} = (v _1, \ldots, v _m), }$ ${ \mathscr{W} = (w _1, \ldots, w _n) , }$ and ${ \mathscr{X} = (\mathbf{x} _1, \ldots, \mathbf{x} _p) , }$ of ${ V, }$ ${ W , }$ and ${ X }$ respectively.
Note that the bilinear map ${ b }$ can be written as
$${ {\begin{aligned} &\, b \left(\sum _i x _i v _i, \sum _j y _j w _j \right) \\ = &\, \sum _{i, j} x _i y _j b(v _i, w _j) \\ = &\, \sum _{i, j} x _i y _j \left( \mathscr{X} B _{i, j} \right) \\ = &\, \mathscr{X} \sum _{i, j} x _i y _j B _{i, j} \\ = &\, \mathscr{X} \sum _{i, j} x _i y _j \left( \sum _k e _k b _{i, j, k} \right) \\ = &\, \mathscr{X} \sum _{i, j, k} x _i y _j b _{i, j, k} e _k . \end{aligned}} }$$
Note that in the last sum the indices are over ${ i \in [m], }$ ${ j \in [n] , }$ and ${ k \in [p] . }$
Hence the bilinear map can be viewed as the map
$${ {\begin{aligned} &\, \mathbb{C} ^m \times \mathbb{C} ^n \to \mathbb{C} ^p , \\ &\, (X, Y) \mapsto \begin{pmatrix} \sum _{i, j} x _i y _j b _{i, j, 1} \\ \vdots \\ \sum _{i, j} x _i y _j b _{i, j, p} \end{pmatrix} . \end{aligned}} }$$
Let ${ B _k := (b _{i, j, k}) _{i, j} .}$ Hence the above bilinear map is
$${ {\begin{aligned} &\, \mathbb{C} ^m \times \mathbb{C} ^n \to \mathbb{C} ^p, \\ &\, (X, Y) \mapsto \begin{pmatrix} X ^T B _1 Y \\ \vdots \\ X ^T B _p Y \end{pmatrix} \end{aligned}} . }$$
Note that the strongly nondegenerate condition can be written as
$${ X ^T B _1 Y = 0, \ldots, X ^T B _p Y = 0 \implies X = 0 \text{ or } Y = 0 . }$$
We are to show
$${ \text{To show:} \quad m + n \leq p + 1 . }$$
Hence the problem can be written as
To show: Let ${ B _1, \ldots, B _p \in \mathbb{C} ^{m \times n} }$ be such that
$${ X ^T B _1 Y = 0, \ldots, X ^T B _p Y = 0 \implies X = 0 \text{ or } Y = 0 . }$$
Then ${ m + n - 1 \leq p . }$
Note that
$${ \text{vec}(AXB) = (B ^T \otimes A) \text{vec}(X) . }$$
Hence the condition can be written as
$${ {\begin{aligned} &\, (Y ^T \otimes X ^T) \text{vec}(B _1) = 0, \ldots, (Y ^T \otimes X ^T) \text{vec}(B _p) = 0 \\ \implies &\, X = 0 \text{ or } Y = 0 \end{aligned}} }$$
that is
$${ {\begin{aligned} &\, \text{vec}(B _1) ^T (Y \otimes X) = 0, \ldots, \text{vec}(B _p) ^T (Y \otimes X) = 0 \\ \implies &\, Y \otimes X = 0 \end{aligned}} }$$
that is
$${ \begin{pmatrix} \text{vec}(B _1) ^T \\ \vdots \\ \text{vec}(B _p) ^T \end{pmatrix} (Y \otimes X) = 0 \implies Y \otimes X = 0 . }$$
Hence the problem can be written as
To show: Let ${ M \in \mathbb{C} ^{p \times mn} . }$ Suppose for ${ Y \in \mathbb{C} ^n , }$ ${ X \in \mathbb{C} ^m , }$
$${ M(Y \otimes X) = 0 \implies Y \otimes X = 0 . }$$
Then ${ m + n - 1 \leq p . }$