$$ I=\int_0^2 \frac{\ln x}{x^2 - x + 1} \,dx $$
\int_0^\infty \frac{\ln x}{ax^2+bx+c} ,dx
There exists a really elaborate proof for the below generalization;
$$\color{red}{2b\int_0^z\frac{\ln(x+c)}{(x+a)^2+b^2}\,dx=\left[\arctan\left(\frac{z+a}{b}\right)-\arctan\left(\frac{a}{b}\right)\right]\ln\left((a-c)^2+b^2\right)+\operatorname{Cl}_2(2\alpha+2\gamma)-\operatorname{Cl}_2(2\beta+2\gamma)+\operatorname{Cl}_2(\pi-2\alpha)-\operatorname{Cl}_2(\pi-2\beta)}$$
Where,
$$\color{red}{\alpha = \arctan\left(\frac{a}{b}\right) ,\quad \beta = \arctan\left(\frac{z+a}{b}\right) ,\quad \gamma = \arctan\left(\frac{c-a}{b}\right)} $$
Re-write the integral,
$$I = \int_0^2 \frac{\ln x}{\left(x - \tfrac{1}{2}\right)^2 + \left(\tfrac{\sqrt{3}}{2}\right)^2} \, dx$$
Set $z=2,c=0, b=\frac{\sqrt3}{2}, a=-\frac12$
$$\color{blue}{\sqrt3\int_0^2 \frac{\ln x}{\left(x - \tfrac{1}{2}\right)^2 + \left(\tfrac{\sqrt{3}}{2}\right)^2} \, dx=\operatorname{Cl}_2(2\alpha+2\gamma)-\operatorname{Cl}_2(2\beta+2\gamma)+\operatorname{Cl}_2(\pi-2\alpha)-\operatorname{Cl}_2(\pi-2\beta)}$$
where,
$$\color{blue}{\alpha = -\frac{\pi}{6} ,\quad \beta = \frac{\pi}{3} ,\quad \gamma = \frac{\pi}{6}} $$
Therefore,
$\operatorname{Cl}_2(2\alpha+2\gamma)=\operatorname{Cl}_2(0)=0$
$\operatorname{Cl}_2(2\beta+2\gamma)=\operatorname{Cl}_2(\pi)=0$
$\operatorname{Cl}_2(\pi-2\alpha)=\operatorname{Cl}_2\left(\frac{4\pi}{3}\right)=\Im \left[ \mathrm{Li}_2(e^{i\frac{4\pi}{3}}) \right]=-\frac{\psi^{(1)}\left(\tfrac{1}{3}\right)}{6\sqrt{3}} + \frac{\psi^{(1)}\left(\tfrac{2}{3}\right)}{6\sqrt{3}}
$
$\operatorname{Cl}_2(\pi-2\beta)=\operatorname{Cl}_2\left(\frac{\pi}{3}\right)=\Im \left[ \mathrm{Li}_2(e^{i\frac{\pi}{3}}) \right]=\frac{\psi^{(1)}\left(\tfrac{1}{6}\right)}{24\sqrt{3}} + \frac{\psi^{(1)}\left(\tfrac{1}{3}\right)}{24\sqrt{3}} - \frac{\psi^{(1)}\left(\tfrac{2}{3}\right)}{24\sqrt{3}} - \frac{\psi^{(1)}\left(\tfrac{5}{6}\right)}{24\sqrt{3}}
$
All of the above derived from $\boxed{\mathrm{Cl}_2(\theta) = \sum_{n=1}^{\infty} \frac{\sin n\theta}{n^2} = \Im \left[ \mathrm{Li}_2(e^{i\theta}) \right]}$
To wrap it up, we get,
$$\therefore I=\frac{1}{\sqrt3}\left(\Im \left[ \mathrm{Li}_2(e^{i\frac{4\pi}{3}}) \right]-\Im \left[ \mathrm{Li}_2(e^{i\frac{\pi}{3}}) \right]\right)=\frac{1}{72} \left( 5\psi^{(1)}\left(\tfrac{2}{3}\right) - 5\psi^{(1)}\left(\tfrac{1}{3}\right) - \psi^{(1)}\left(\tfrac{1}{6}\right) + \psi^{(1)}\left(\tfrac{5}{6}\right) \right)
$$
Here are the numerical checks - 1 and 2
Must say, a pretty tacky problem for math tournament.
Edit:
Had the question been with the limits $0->1$, you can see this post, which gives a good insight.
Had the question been with the limits $0->\infty$, this post