You have forgotten a factor of $2:$
$$\begin{align}\int \frac{\mathrm d x}{1+x^4} & =\sqrt i\int \frac{\mathrm d t}{1-t^4}\\ & =\frac{\sqrt{i}}{\color{green}2}\left[\int \frac{\mathrm d t}{1-t^2}+\int \frac{\mathrm d t}{1+t^2}\right]\\&=\frac{\sqrt i}2\left[\frac12\ln\left(\frac{\sqrt i+x}{\sqrt i-x}\right)+\tan^{-1}\frac{x}{\sqrt i}\right]+C\end{align}$$
To convert these complex-valued functions back to real-valued functions, the following identities will come in handy
$$\ln(z)=\ln|z|+i(2n\pi+\operatorname{arg}z)$$
$$\implies\ln(x+yi)=\frac12\ln\left(x^2+y^2\right)+i\tan^{-1}\frac{y}x+2n\pi i$$
$$\tan^{-1}=\frac{i}2\ln\left(\frac{1-ix}{1+ix}\right)$$
$$\tan^{-1}x+\tan^{-1}y=\tan^{-1}\left(\frac{x+y}{1-xy}\right)\forall\,xy<1$$
$$\tan^{-1}x-\tan^{-1}y=\tan^{-1}\left(\frac{x-y}{1+xy}\right)\forall\,xy>-1$$
Now, there seems to be an apparent ambiguity in the choice of $\sqrt i$, as it can be both $\pm\frac{i+1}{\sqrt 2}$, i.e., $e^\frac{\pi\iota}4$ and $e^\frac{5\pi\imath}4$. But notice that both these values of $\sqrt i$ yield the same anti-derivative as the function $\displaystyle f(t)=\frac{t}4\ln\left(\frac{t-x}{t+x}\right)+\frac{t}2\tan^{-1}\frac{x}t$ is even. So, let $\sqrt i=\frac{i+1}{\sqrt2}$, then the given integral $\mathcal I$ becomes
$$\begin{align}\mathcal I&=\frac{\sqrt i}4\ln\left(\frac{\sqrt i+x}{\sqrt i-x}\right)+\frac{i\sqrt i}2\ln\left(\frac{1-\sqrt ix}{1+\sqrt ix}\right)+C\\&=\frac{i+1}{4\sqrt2}\ln\left(\frac{x+\frac1{\sqrt2}+\frac{i}{\sqrt2}}{-x+\frac1{\sqrt2}+\frac{i}{\sqrt2}}\right)+\frac{i-1}{4\sqrt2}\ln\left(\frac{1-\frac{x}{\sqrt2}-\frac{ix}{\sqrt2}}{1+\frac{x}{\sqrt2}+\frac{ix}{\sqrt2}}\right)+C\\&=\frac{i+1}{4\sqrt2}\left[\frac12\ln\left|x^2+\sqrt2x+1\right|+i\tan^{-1}\frac1{\sqrt2x+1}-\frac12\ln\left|x^2-\sqrt2x+1\right|+i\tan^{-1}\frac1{\sqrt2x-1}\right]+\frac{i-1}{4\sqrt2}\left[\frac12\ln\left|x^2-\sqrt2x+1\right|+i\tan^{-1}\frac{x}{x-\sqrt2}-\frac12\ln\left|x^2+\sqrt2x+1\right|-i\tan^{-1}\frac{x}{x+\sqrt2}\right]+C\\&\overset{*}=\frac1{4\sqrt2}\ln\left|\frac{x^2+\sqrt2x+1}{x^2-\sqrt2x+1}\right|-\frac1{2\sqrt2}\tan^{-1}\frac{\sqrt2x}{x^2-1}+C\end{align}$$
$*:$ $\tan^{-1}\frac{x}{x-\sqrt2}-\tan^{-1}\frac{x}{x+\sqrt2}=\tan^{-1}\frac1{\sqrt2x+1}+\tan^{-1}\frac{x}{\sqrt x-1}=\tan^{-1}\frac{\sqrt2x}{x^2-1}$