How can I prove in an elementary way that: $$\int _0^{\pi /2}x\operatorname{Li}_3\left(\sin \left(x\right)\right)\:\mathrm{d}x=\int _0^1\frac{\arcsin \left(x\right)\operatorname{Li}_3\left(x\right)}{\sqrt{1-x^2}}\:\mathrm{d}x$$ $$=\frac{5}{8}\zeta(2)\zeta(3)-\frac{217}{256}\zeta(5)-\frac{55}{64}\log \left(2\right)\zeta(4)+\frac{1}{3}\log ^3\left(2\right)\zeta(2)-\frac{1}{48}\log ^5\left(2\right)+\frac{5}{2}\operatorname{Li}_5\left(\frac{1}{2}\right),$$ where $\zeta$ is the Riemann zeta function and $\operatorname{Li}_n$ denotes the polylogarithm.
The closed form is simple enough; however, I am not able to reduce it to Euler sums which yield similar closed forms. I tried converting the trilogarithm into an integral as follows: $$\int _0^{\pi /2}x\operatorname{Li}_3\left(\sin \left(x\right)\right)\:\mathrm{d}x=\frac{1}{2}\int _0^1\log ^2\left(t\right)\int _0^{\pi /2}\frac{x\sin \left(x\right)}{1-\sin \left(x\right)t}\:\mathrm{d}x\:\mathrm{d}t.$$ I tried some substitutions but couldn't obtain anything useful from this. Furthermore, I converted the integral into series but the Euler sums which appear subsequently are challenging. For example: $$\int _0^1\frac{\arcsin \left(x\right)\operatorname{Li}_3\left(x\right)}{\sqrt{1-x^2}}\:\mathrm{d}x$$ $$=\int _0^1\frac{1}{2}\sum _{n=1}^{\infty }\frac{4^n}{n\binom{2n}{n}}x^{2n-1}\operatorname{Li}_3\left(x\right)\:\mathrm{d}x=\frac{1}{2}\sum _{n=1}^{\infty }\frac{4^n}{n\binom{2n}{n}}\int _0^1x^{2n-1}\operatorname{Li}_3\left(x\right)\:\mathrm{d}x$$ $$=\frac{1}{2}\sum _{n=1}^{\infty }\frac{4^n}{n\binom{2n}{n}}\left(\frac{1}{8}\frac{H_{2n}}{n^3}-\frac{1}{4}\zeta(2)\frac{1}{n^2}+\frac{1}{2}\zeta(3)\frac{1}{n}\right)$$ $$=\frac{1}{16}\sum _{n=1}^{\infty }\frac{4^nH_{2n}}{n^4\binom{2n}{n}}-\frac{1}{8}\zeta(2)\sum _{n=1}^{\infty }\frac{4^n}{n^3\binom{2n}{n}}+\frac{1}{4}\zeta(3)\sum _{n=1}^{\infty }\frac{4^n}{n^2\binom{2n}{n}}.$$ The leftmost series is very difficult whilst the rest are quite simple.