In Bourgain's 1999 jams paper, when he proved the concentration property, he say that $(3.3)\leq C\|e^{i(t-a)\Delta}[D_x u(a)]\|_{L^{10/3}_{x,t}}$, Why? I have struggled a long time on this issue but still don't know how to do, is it easy to see?
By Strichartz estimates, I just know the second inequality in (3.5): $ \| e^{i(t-a)\Delta} [D_x u(a)] \|_{L_{x,t}^{10/3}}\lesssim\|Du(a)\|_{L^2}$ because in $\mathbb{R}^3$, we have admissible pair $\frac{1}{q}=\sigma(\frac{1}{2}-\frac{1}{r})$ where $2<q,r\leq\infty$ and $\sigma=\frac{3}{2}$. $ L_{x,t}^{10/3} $ correspondents to $q=r=\frac{10}{3}$ we have $\frac{3}{2}(\frac{1}{2}-\frac{1}{10/3})=\frac{3}{2}(\frac{5}{10}-\frac{3}{10})=\frac{3}{2}\times\frac{2}{10}=\frac{3}{10}$.
Any hints are wellcome!!!
