The exact value of the integral
$$
I=\int_0^1 \frac{\operatorname{arcsinh} x \arccos x}{\sqrt{x^2+1}} d x= \frac{\pi^3}{96}
$$
prompted me to try all methods I know, but in vain. After few days, integration by parts came to my mind that
$$
\begin{aligned}
I & =\int_0^1\frac{\operatorname{arcsinh} x \arccos x}{\sqrt{x^2+1}} d x \\
& =\frac{1}{2} \int_0^1 \arccos x d\left(\operatorname{arcsinh}^2 x\right) \\
& =\frac{1}{2} \int_0^1 \frac{\operatorname{arcsinh}{ }^2 x}{\sqrt{1-x^2}} d x ,
\end{aligned}
$$
which lead me to use the usual substitution $x=\sin \theta$.
$$
I=\frac{1}{2} \int_0^ {\frac \pi 2} \operatorname{arcsinh}^2(\sin \theta) d \theta,
$$
by which I was stuck for couples of hours. I was forced to use series representation of
$$\operatorname{arcsinh}^2 x= \sum_{k=0}^{\infty} \frac{(-4)^k(k!)^2}{(1+k)(1+2 k)!} x ^{2+2 k} .$$
Then
$$
\begin{aligned}
I & =\frac{1}{2} \int_0^ {\frac \pi 2} \sum_{k=0}^{\infty} \frac{(-4)^k(k!)^2}{(1+k)(1+2 k)!} \sin ^{2+2 k} \theta d \theta\\
& =\frac{1}{4} \sum_{k=0}^{\infty} \frac{(-4)^k(k!)^2}{(1+k)(1+2 k)!} B\left(k+\frac{3}{2}, \frac{1}{2}\right) \\
& =\frac{1}{4} \sum_{k=0}^{\infty} \frac{(-4)^k(k!)^2}{(1+k)(1+2 k)!} \cdot \frac{\Gamma\left(k+\frac{3}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma(k+2)} \\
& =\frac{1}{4} \sum_{k=0}^{\infty} \frac{(-4)^k(k!)^2}{(1+k)(1+2 k)!} \frac{\left(k+\frac{1}{2}\right)\left(k-\frac{1}{2}\right) \cdots \frac{1}{2!} \Gamma^2\left(\frac{1}{2}\right)}{(k+1)!} \\
& =\frac{\pi}{4} \sum_{k=0}^{\infty} \frac{(-1)^k 2^{2 k}(k!)^2}{(1+k)(1+2 k)!} \cdot \frac{(2 k+1)(2 k-1) \cdots 1}{(k+1)!2^{k+1}}\\& =\frac{\pi}{4} \sum_{k=0}^{\infty} \frac{(-1)^k 2^{2 k}(k!)^2}{(1+k)(k+1)!2^{k+1}(2 k)(2(k-1)) \cdots \cdot 2}\\&= \frac{\pi}{8} \sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1)^2}\\&=\frac{\pi^3}{96}
\end{aligned}
$$
My Question: Can we evaluate the integral without series representation?
Your comments and alternatives are highly appreciated.