8

Assume $$T_t(x)=x+\int_0^tv(s,T_s(x))\;{\rm d}s\;\;\;\text{for }x\in\mathbb R^d$$ is a diffeomorphism for all $t\ge0$ and let $$p_t(x):=p(T_t^{-1}(x))\left|\det{\rm D}T_t^{-1}(x)\right|\;\;\;\text{for }x\in\mathbb R^d$$ for $t\ge0$ for some $p:\mathbb R^d\to\mathbb R$.

I was able to derive $$\frac{\rm d}{{\rm d}t}p_t(x)=-p_t(x)\left(\left\langle\nabla\ln p(T_t^{-1}(x)),{\rm D}T_t^{-1}(x)v_t(x)\right\rangle+\nabla\cdot v_t(x)\right)\tag1$$ and $$\frac{\rm d}{{\rm d}t}\ln p_t(x)=-\left\langle\nabla\ln p(T_t^{-1}(x)),{\rm D}T_t^{-1}(x)v_t(x)\right\rangle-\nabla\cdot v_t(x)\tag2.$$ However, I would like to show that we actually got $$\frac{\rm d}{{\rm d}t}p_t(x)=-\nabla\cdot(p_tv_t)(x)\tag3.$$ So, I tried to compute $$\nabla\cdot(p_tv_t)(x)=p_t(x)\left(\left\langle\nabla\ln p(T_t^{-1}(x)),{\rm D}T_t^{-1}(x)v_t(x)\right\rangle+\operatorname{tr}\left[{{\rm D}T_t^{-1}(x)}^{-1}{\rm D}^2T_t^{-1}(x)v_t(x)\right]+\nabla\cdot v_t(x)\right)\tag4.$$ Clearly, the problematic term is $$\operatorname{tr}\left[{{\rm D}T_t^{-1}(x)}^{-1}{\rm D}^2T_t^{-1}(x)v_t(x)\right]\tag5.$$ It seems like this needs to vanish, but I absolutely don't see why.

Mittens
  • 46,352
0xbadf00d
  • 14,208

1 Answers1

4

Suppose we have the differential equation \begin{align} \dot{\mathbf{x}}&=v(t,\mathbf{x})\tag{0}\label{zero} \end{align} where $v:I\times\Omega\subset \mathbb{R}\times\mathbb{R}^n \longrightarrow\mathbb{R}^n$ satisfies the smoothness conditions of the uniqueness and existence theorem.

An important property of the solutions to the differential equation \eqref{zero} is the flow property, namely, if $\phi_{t,s}(y)=\phi(t;s,y)$ denotes the solution in $t$ to \eqref{zero} with initial conditions $\phi(s;s,y)=y$, then

  1. $\phi_{t,s}\circ\phi_{s,r}(y)=\phi_{t,r}(y)$ for all $r,\,s,\,t\in I$ and $y\in \Omega$.
  2. $\phi_{t,t}(y)=y$ for all $t\in I$ and $y\in\Omega$.

Each $\phi_{s,t}(\cdot)$ defines a diffeomorpism on $\Omega$ to itself, its inverse being $\phi_{t,s}$

Suppose that $\mu$ is a measure on $(\Omega,\mathcal{B}(\Omega))$ with smooth density $g$ with respect to Lebesgue measure on $\Omega$. The flow $\phi$ induces a family of measures measure $\mu_t$ on phase space $(\Omega, \mathcal{B}(\Omega))$ given by \begin{align} \mu_t(B):=\mu(\phi^{-1}_{t,0}(B))=\mu(\phi_{0,t}(B))\tag{1}\label{push} \end{align} Furthermore, $\mu_t$ also has a density with respect to the Lebesgue measure. This follows from \begin{align} \mu_t(B)=\int_{\phi_{0,t}(B)}g({\bf x})d{\bf x}= \int_{B} g(\phi_{0,t}({\bf x})) \det\left[\tfrac{\partial\phi_{0,t}}{\partial x}({\bf x})\right]d{\bf x}\tag{2}\label{push_density}. \end{align} So, $p(t;\mathbf{x})=g(\phi_{0,t}({\bf x})) \det\left[\tfrac{\partial\phi_{0,t}}{\partial x}({\bf x})\right]$ is a density for $\mu_t$.

The following result, a generalization of Liouville's conservation law, is the content of the OP:

Therorem Let $\phi$ be the flow associated to equation \eqref{zero}, and $\mu(d{\bf x})=g({\bf x})d{\bf x}$ be a smooth measure on phase space $(\Omega,\mathcal{B}(\Omega))$. Then, the density $p:=p(t,{\bf x})$ of the induced measure $\mu_t(d\mathbf{x})$ is smooth and satisfies the equation \begin{align} \frac{\partial p}{\partial t}+\nabla_{\bf x}\cdot(p\,v)=0\tag{3}\label{three} \end{align}

For the proof of this fact, first I state the following elementary auxiliary results from Calculus and from ordinary differential equations:

Lemma D: Let $\Delta:\mathbb{R}^{n^2}\longrightarrow\mathbb{R}$ be the determinant function, i.e. $$\Delta(\alpha_{11},\ldots,\alpha_{n1},\ldots,\alpha_{1n}, \ldots,\alpha_{nn})^{\top} = \det[(\alpha_{ij})]$$ where $(\alpha_{ij})$ is the $n\times n$-matrix whose $ij$-th component is $\alpha_{ij}$. Then, $$\Delta_\alpha= \frac{\partial \Delta}{\partial\alpha}= (W_{11}\ldots,W_{n1},\ldots,W_{1n},\ldots,W_{nn})$$ where $W_{ij}$ is the $ij$-th cofactor of the matrix $(\alpha_{ij})$.

Proposition W: Let $\phi(t;{\bf x})$ be a solution to the equation $\dot{{\bf x}}= v(t,{\bf x})$, with $\phi(0;{\bf x})={\bf x}$. Define the function $W$ by \begin{align} W(t,{\bf x})&=\det\left[\frac{\partial \phi} {\partial {\bf x}}(t;{\bf x})\right]. \end{align} Then, $W$ satisfies the differential equation \begin{align} \dot{W}(t)=W(t)\, (\nabla_{\bf x}\cdot v)(t,\phi(t;\mathbf{x})); \qquad W(0)=1\tag{4}\label{four} \end{align} where $\left(\nabla_{\bf x}\cdot v\right)(t,\phi(t;{\bf x})) =\sum_{j=1}^n \frac{\partial v}{\partial x_j}(t,\phi(t;{\bf x}))$.

Remark: Proof of these results are discussed in this old posting here. I present them again at the end of this post for completeness.


Proof of \eqref{three}:

Notice that $\mu(B)=\mu_t(\phi_{t,0}(B))$ for all $t$ and any $B\in\mathcal{B}(\Omega)$. Hence, $0=\tfrac{d}{dt}\mu_t(\phi_{t,0}(B))$. From Proposition W and the multivariable change of variables formula \begin{align} 0 &= \frac{d}{dt}\int_{\phi_{t,0}(B)} p(t,\mathbf{x})\,d\mathbf{x} = \frac{d}{dt}\int_{B}p(t,\phi_{t,0}(\mathbf{x}))\det\left[\frac{\partial\phi_{t,0}}{\partial\mathbf{x}}(\mathbf{x})\right]\,d\mathbf{x}\\ &=\int_B \left(\tfrac{\partial p}{\partial t}(t,\phi_{t,0}(\mathbf{x})) + \big(\nabla_{\mathbf{x}}p\cdot v\big)(t,\phi_{t,0}(\mathbf{x}))+ \big(p\,\nabla_{\mathbf{x}}\cdot v\big)(t,\phi_{t,0}(\mathbf{x})\right) \operatorname{det}\Big[\frac{\partial \phi_{t,0}}{\partial x}(\mathbf{x})\Big]\,d\mathbf{x} \\ &=\int_B \left(\frac{\partial p}{\partial t}(t,\phi_{t,0}({\bf x})) + \big(\nabla_{\bf x}\cdot(p\,v)\big)(t,\phi_{t,0}({\bf x}))\right) \det\left[\frac{\partial\phi_{t,0}}{\partial x}({\bf x})\right]\,d{\bf x}\\ &=\int_{\phi_{t,0}(B)}\tfrac{\partial p}{\partial t}(t,{\bf x}) + \big(\nabla_{\bf x}\cdot(p\,v)\big)(t,{\bf x})\,d{\bf x}\tag{5}\label{five} \end{align} for any $B\in \mathcal{B}(\Omega)$. Since for any $t$ fixed, $\phi_t$ is a diffeomorphism, we conclude that \begin{align} \tfrac{\partial p}{\partial t} + \nabla_{\bf x}\cdot(p\,v)=0 \end{align}


Here are short proof to the main results used in the proof of the main result \eqref{three}.

Proof of Lemma D: Compute determinants using the cofactor formula.

Proof of Proposition W: If $\phi(t;{\bf x})=(\phi^1(t;{\bf x}),\ldots,\phi^n(t;{\bf x}))^\top$, denote by $\phi^{i}_{x_j}(t;{\bf x})= \frac{\partial\phi^i}{\partial x_j}(t;{\bf x})$.

Lemma D along with the chain rule yields \begin{align} \dot{W}&= \sum_i W_{i1}\dot{\phi}^{i}_{x_1} +\cdots+ \sum_i W_{in}\dot{\phi}^{i}_{x_n}\\ &=\sum_{ij} W_{ij}\dot{\phi}^{i}_{x_j} \tag{6}\label{chain} \end{align} where $W_{ij}$ is the $ij$--th cofactor of the matrix $\left(\phi^i_{x_j}\right)$.

It is easy to check that $\phi_{\bf x}(t;{\bf x}):=\frac{\partial\phi}{\partial {\bf x}}(t;{\bf x})$ satisfies the variational equation \begin{align} \begin{matrix} \dot{\phi}_{\bf x}(t;{\bf x})&=&v_{\bf{x}}(t,\phi(t;{\bf{x}}))\phi_{\bf x}(t;{\bf x})\\ \phi_{\bf x}(0;{\bf x})&=&I \end{matrix} \tag{7}\label{vareq} \end{align}

substituting \eqref{vareq} on \eqref{chain} and recalling the fact that the determinant of a matrix that has two identical columns is zero, we obtain \begin{align} \dot{W}(t)&=\sum_{ijk} W_{ij}(t) v^i_{x_k}(t,\phi(t;{\bf x}))\phi^k_{x_j}(t;{\bf x})\\ &= \sum_{ki} \left(v^i_{x_k}(t,\phi(t;{\bf x})\right) \sum_j W_{ij}(t)\phi^k_{x_j}(t;{\bf x})\\ &=\sum_i v^i_{x_i}(t,\phi(t;{\bf x}) \sum_j W_{ij}(t)\phi^i_{x_j}(t;{\bf x})\\ &= \sum_i v^i_{x_i}(t,\phi(t;{\bf x})) W(t) = W(t)\,\left(\nabla_{\bf x}\cdot v\right)(t,\phi(t;{\bf x})) \end{align}

Mittens
  • 46,352