The Euler substitution path isn't so bad. Let's break down the steps as follows, making frequent use of the identity $\phi^2=\phi+1$ along the way. (NB: many of these coefficients could be simplified more optimally.)
Substitute $x=\dfrac{\phi^{-2}-\phi^2t}{t-1}$ to eliminate the linear terms from the quadratics; both end up with a coefficient of $2\left(\phi^2+\phi^{-2}\right)-6\equiv0$.
$$\begin{align*}
I &= \int_0^\infty \frac{1 + \phi^2x}{\left(2+2x+x^2\right) \sqrt{1+2x+2x^2}} \, dx \\
&= \int_\tfrac1{\phi^4}^1 \frac{\sqrt5\left(\phi^4-1\right)t}{\left(2-\frac2{\phi^2}+\frac1{\phi^4} + \left(2-2\phi^2+\phi^4\right)t^2\right) \sqrt{1-\frac2{\phi^2}+\frac2{\phi^4}+\left(1-2\phi^2+2\phi^4\right)t^2}} \, dt \\
&= \int_\tfrac1{\phi^4}^1 \frac{\sqrt{3-\phi}\,t}{\left(2-\phi+t^2\right) \sqrt{5-\frac8\phi+t^2}} \, dt
\end{align*}$$
Next substitute $u=\sqrt{7\phi-11}\,\sqrt{5-\dfrac8\phi+t^2}$ to significantly tidy up the limits:
$$\begin{align*}
I &= \int_{\sqrt{5-\tfrac8\phi+\tfrac1{\phi^8}}}^{\sqrt{6-\tfrac8\phi}} \frac{\sqrt{3-\phi}}{7\phi-11+u^2} \, du & u=\sqrt{5-\dfrac8\phi+t^2} \\
&= \int_{\sqrt{2\phi-3}}^{\sqrt{2\phi}} \frac{\sqrt{1+2\phi}}{1+u^2} \, du & u\to\sqrt{7\phi-11}\,u \\
&= \phi^{3/2} \left(\arctan\sqrt{2\phi} - \arctan\left(\sqrt\phi-\frac1{\sqrt\phi}\right)\right) \\
&= \boxed{\phi^{3/2} \arctan\left(\sqrt\phi \frac{1+\left(\sqrt2-1\right)\phi}{\sqrt2+\phi}\right)}
\end{align*}$$