Consider $ f:\mathbb{R}^{*}\rightarrow\mathbb{R}, \ x\mapsto\sum\limits_{\ell=1}^{d-k}{\left(-1\right)^{\ell + 1}\binom{d-k}{\ell}x^{\ell - 1}} $.
We have for $ x\in\mathbb{R}^{*} $ :
\begin{aligned}f\left(x\right)&=\frac{1}{x}-\frac{1}{x}\sum_{\ell = 0}^{d-k}{\left(-1\right)^{\ell}\binom{d-k}{\ell}x^{\ell}}\\ &=\frac{1}{x}-\frac{\left(1-x\right)^{d-k}}{x}\end{aligned}
Differentiating $ f $, $r $ times gives on one side $ f^{\left(r\right)}\left(x\right)=r!\sum\limits_{\ell=1}^{d-k}{\left(-1\right)^{\ell + 1}\binom{d-k}{\ell}\binom{\ell - 1}{r}x^{\ell - 1-r}} $, and on the other, using leibniz rule : \begin{aligned}f^{\left(r\right)}\left(x\right)&=\frac{\left(-1\right)^{r}r!}{x^{r+1}}-\sum_{p=0}^{r}{\binom{r}{p}\left(x\mapsto\left(1-x\right)^{d-k}\right)^{\left(p\right)}\left(x\right)\left(x\mapsto\frac{1}{x}\right)^{\left(r-p\right)}\left(x\right)} \\&=\frac{\left(-1\right)^{r}r!}{x^{r+1}}-\sum_{p=0}^{r}{\binom{r}{p}\left(-1\right)^{p}\frac{\left(d-k\right)!}{\left(d-k-p\right)!}\left(1-x\right)^{d-k-p}\frac{\left(-1\right)^{r-p}\left(r-p\right)!}{x^{r-p+1}}}\\ &=\frac{\left(-1\right)^{r}r!}{x^{r+1}}\left(1-\sum_{p=0}^{r}{\binom{d-k}{p}x^{p}\left(1-x\right)^{d-k-p}}\right)\end{aligned}
Finally, taking $ x= 1$ gives : $$ f^{\left(r\right)}\left(1\right)=r!\sum\limits_{\ell=1}^{d-k}{\left(-1\right)^{\ell + 1}\binom{d-k}{\ell}\binom{\ell - 1}{r}}=\left(-1\right)^{r}r! $$
Hence the result.