I'll start by saying that the solution isn't graphically nice to look at, but on the other hand the integral is quite complicated anyway, anyway respect the fact that you asked for a closed form of the integral (incidentally, even without the presence of the logarithm it would have been necessary to use hypergeometric functions).
Using Feynman trick, let
$$I(x)=\int_0^1\frac{t^{2+x}}{\left(1+\frac{t^4}{2}\right)^{5/4}}\mathrm{d}t\qquad\Rightarrow\qquad I'(0)=\int_0^1\frac{t^2\ln(t)}{\left(1+\frac{t^4}{2}\right)^{5/4}}\mathrm{d}t$$
$I(x)$ has a closed form
$$I(x)=\frac{1}{x+3}{}_2F_1\left(\left.{\frac{5}{4},\frac{x+3}{4}\atop\frac{7+x}{4}}\right|-\frac{1}{2}\right)$$
Where ${}_2F_1\left(\left.{a,b\atop c}\right|z\right)$ is the hypergeometric function
Deriving $I(x)$ and calculating it at $x=0$ you get
\begin{align*}
\int_0^1\frac{t^2\ln(t)}{\left(1+\frac{t^4}{2}\right)^{5/4}}\mathrm{d}t=&\frac{1}{12}{}_2F_1^{\left({0,0\atop 1},0\right)}\left(\left.{\frac{5}{4},\frac{3}{4}\atop\frac{7}{4}}\right|-\frac{1}{2}\right)+\frac{1}{12}{}_2F_1^{\left({0,1\atop 0},0\right)}\left(\left.{\frac{5}{4},\frac{3}{4}\atop\frac{7}{4}}\right|-\frac{1}{2}\right)\\
-&\frac{1}{9}{}_2F_1\left(\left.{\frac{3}{4},\frac{5}{4}\atop\frac{7}{4}}\right|-\frac{1}{2}\right)
\end{align*}
I used a non-standard notation of derivatives with multi-indexes, however the meaning is
$${}_2F_1^{\left({0,0\atop 1},0\right)}\left(\left.{\frac{5}{4},\frac{3}{4}\atop\frac{7}{4}}\right|-\frac{1}{2}\right):=\left.\frac{\partial}{\partial c}{}_2F_1\left(\left.{\frac{5}{4},\frac{3}{4}\atop c}\right|-\frac{1}{2}\right)\right|_{c=\frac{7}{4}}$$
and
$${}_2F_1^{\left({0,1\atop 0},0\right)}\left(\left.{\frac{5}{4},\frac{3}{4}\atop\frac{7}{4}}\right|-\frac{1}{2}\right):=\left.\frac{\partial}{\partial b}{}_2F_1^{\left({0,1\atop 0},0\right)}\left(\left.{\frac{5}{4},b\atop\frac{7}{4}}\right|-\frac{1}{2}\right)\right|_{b=\frac{3}{4}}$$
For brevity you can define
$$\psi(x,y):={}_2F_1\left(\left.{\frac{5}{4},x\atop y}\right|-\frac{1}{2}\right)$$
so you can write
$$\int_0^1\frac{t^2\ln(t)}{\left(1+\frac{t^4}{2}\right)^{5/4}}\mathrm{d}t=\frac{1}{12}\psi^{(1,0)}\left(\frac{3}{4},\frac{7}{4}\right)+\frac{1}{12}\psi^{(0,1)}\left(\frac{3}{4},\frac{7}{4}\right)-\frac{1}{9}\psi\left(\frac{3}{4},\frac{7}{4}\right)$$