Let us consider the following sub algebra of $\mathbb{M}_4(K)$:
\begin{equation} A=\begin{pmatrix} K & 0 & 0 & 0\\ K & K & 0 & 0\\ K & 0 & K & 0\\ K & K & K & K \end{pmatrix} \end{equation}
Calculate soc($A)$ (as $A$-module).
My attempt.
By definition soc($A$) is the sum of all simple submodules of $A$. Let's consider $e_1=e_{1,1}, e_2=e_{2,2}, e_3=e_{3,3}$ and $e_4=e_{4,4}$. It is clear that it $\{e_1,e_2,e_3,e_4\}$ is a complete set of primitive orthogonal idempotents of $A$. Therefore any $A$-simple module is isomorphic to some $S(i)$, where $S(i)=$top$(e_iA)=e_iA/$rad($e_iA$). We calculate the radicals:
\begin{equation} \text{rad}(e_1A)=0, \hspace{0.1cm}\text{rad}(e_2A)=\begin{pmatrix} 0 & 0 & 0 & 0\\ K & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}, \hspace{0.1cm} \text{rad}(e_3A)=\begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ K & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} \end{equation}
\begin{equation} \text{rad}(e_4A)=\begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ K & K & K & 0 \end{pmatrix} \end{equation}
So:
\begin{equation} S(1)=e_1A, \hspace{0.1cm}S(2)=\begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & K & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}, \hspace{0.1cm} S(3)=\begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & K & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} \end{equation}
\begin{equation} S(4)=\begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & K \end{pmatrix} \end{equation}
And then
\begin{equation} \text{soc}(A)=\begin{pmatrix} K & 0 & 0 & 0\\ 0 & K & 0 & 0\\ 0 & 0 & K & 0\\ 0 & 0 & 0 & K \end{pmatrix} \end{equation}
I think that at some point in my reasoning I am wrong, since the text says that:
\begin{equation} \text{soc}(A)=\begin{pmatrix} K & 0 & 0 & 0\\ K & 0 & 0 & 0\\ K & 0 & 0 & 0\\ K & 0 & 0 & 0 \end{pmatrix} \end{equation}