Making $\color{red}{a \pi \to a}$
$$I(a) = \int_{0}^{\infty} \frac{x \log(1 + e^{-ax})}{1 + x^2} \,dx$$
Expand the logarithm to face
$$\frac{x \log(1 + e^{-ax})}{1 + x^2}=\sum_{n=1}^\infty\frac{ (-1)^{n+1}}n\,\frac x{1+x^2}\,e^{-n a x}$$ and
$$\int \frac x{1+x^2}\,e^{-n a x}\,dx=\frac 12\Big(e^{-i a n}\, \text{Ei}(-a n (x-i))+e^{i a n}\, \text{Ei}(-a n (x+i)) \Big)$$
$$J_n(a)=\int_0^\infty \frac x{1+x^2}\,e^{-n a x}\,dx$$
$$\color{blue}{J_n(a)=\frac{\pi}{2} \sin (a n)-(\text{Ci}(a n) \cos (a n)+\text{Si}(a n) \sin (a n))}$$
$$ \left|\frac{J_{n+1}(a)}{J_{n}(a)}\right|\sim 1-\frac 2 n$$
$$\large\color{red}{I(a)=\sum_{n=1}^\infty\frac{ (-1)^{n+1}}n\,J_n(a)}$$
Interesting is
$$J_n(\pi)=(-1)^{n+1} \text{Ci}( n\pi)\quad \implies \quad I(\pi)=\sum_{n=1}^\infty \frac{\text{Ci}(n \pi )}{n}$$ which converges reasonably fast. Computing the partial sums
$$\left(
\begin{array}{cc}
p & \sum_{n=1}^p \frac{\text{Ci}(n \pi )}{n}\\
10 & 0.0648622 \\
20 & 0.0648993 \\
30 & 0.0649034 \\
40 & 0.0649044 \\
50 & 0.0649048 \\
\end{array}
\right)$$
Edit
Limiting the summation to $100$ terms, the results
$$\left(
\begin{array}{ccc}
a & \text{summation} & \text{integration} \\
0.1 & 1.42893720 & 1.42898400 \\
0.2 & 1.01442770 & 1.01444093 \\
0.3 & 0.79394618 & 0.79395191 \\
0.4 & 0.65074171 & 0.65074532 \\
0.5 & 0.54857755 & 0.54857953 \\
0.6 & 0.47150894 & 0.47151087 \\
0.7 & 0.41115225 & 0.41115484 \\
0.8 & 0.36258426 & 0.36258581 \\
0.9 & 0.32268593 & 0.32268671 \\
1 & 0.28936850 & 0.28936894 \\
2 & 0.12547474 & 0.12547486 \\
3 & 0.06970638 & 0.06970643 \\
4 & 0.04403759 & 0.04403763 \\
5 & 0.03018394 & 0.03018397 \\
6 & 0.02190055 & 0.02190056 \\
7 & 0.01657494 & 0.01657495 \\
8 & 0.01295922 & 0.01295923 \\
9 & 0.01039770 & 0.01039771 \\
10 & 0.00851988 & 0.00851995 \\
\end{array}
\right)$$