This is my question:
How to evaluate or prove this integral: \begin{equation} \iiint_{[0,1]^3} \frac{1}{\left(1+x^2+y^2+z^2\right)^{\frac{5}{2}}}\mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z =\frac{1}{\sqrt 2}\cot^{-1}\left(2\sqrt2 \right) \end{equation}
This question arose from my study of this integral: \begin{equation} I=\int_0^{+\infty}e^{-x} \mathrm{erf}^n \left(\sqrt x \right) \, \mathrm{d}x \end{equation} when $n = 3$.
My Attempt and Conjecture:
\begin{align} I&=\int_0^{+\infty}2ue^{-u^2}\mathrm{erf}^3(u) \, \mathrm{d}u\ \ \ (x=u^2)\\ &=\int_0^{+\infty}2ue^{-u^2}\left(\int_0^u e^{-x^2} \mathrm{d}x \right)^3 \mathrm{d}u\\ &=\int_0^{+\infty}2u^4e^{-u^2}\left(\int_0^1 e^{-u^2y^2} \mathrm{d}y \right)^3 \mathrm{d}u\\ &=2\int_0^1\int_0^1\int_0^1\int_0^{+\infty}u^4e^{-(1+x^2+y^2+z^2)u^2}\mathrm{d}u \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \\ &=2\cdot\frac{1}{2}\Gamma \left(\frac{5}{2}\right)\int_0^1\int_0^1\int_0^1\frac{1}{\left(1+x^2+y^2+z^2\right)^{\frac{5}{2}}}\mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z. \end{align}
Conjecture:
\begin{align} n=1 &: I_1 = \frac{1\cdot \sqrt 2}{\pi}\cot^{-1}\left(0\cdot \sqrt2 \right)\\ n=2 &: I_2 = \frac{2\cdot\sqrt2}{\pi}\cot^{-1}\left(1\cdot\sqrt2 \right)\\ n=3 &: I_3 = \frac{3\cdot\sqrt2}{\pi}\cot^{-1}\left(2\cdot\sqrt2 \right)\\ &\vdots \\ n=k &: I_k = \frac{k\cdot\sqrt2}{\pi}\cot^{-1}\left((k-1)\cdot\sqrt2 \right)? \end{align} However, when $n=4$, it becomes incorrect, and thus I have failed. Can someone assist me in correctly calculating this problem? $$ \bbox[13px,#90EE90,border:5px solid #111a68]{\int_0^{+\infty}e^{-x} \mathrm{erf}^n \left(\sqrt x \right) \mathrm{d}x= \, ?} $$