First, the equation
$$ a_n = a + \sum_{k=1}^n \frac{b-a}{2^k} $$
is incorrect, as you noticed. That was an error by the author of the earlier question.
But your equation
$$ a_{n+2} = a + \left(1 - \frac{2n-3}{2^n} \right) (b-a) $$
is also incorrect.
After guessing a general form from a pattern, check it against the original problem, to see if we can prove it's really true for all terms of the sequence or just so far.
For the earlier question's claim, $a_{n+2} = \frac{a_{n+1}+a_n}{2}$ becomes
$$ a + \sum_{k=1}^{n+2} \frac{b-a}{2^k} \stackrel{?}{=} \frac 12 \left[a + \sum_{k=1}^{n+1} \frac{b-a}{2^k} + a + \sum_{k=1}^n \frac{b-a}{2^k} \right]$$
$$ \frac{b-a}{2^{k+1}} + \frac{b-a}{2^{k+2}} + \sum_{k=1}^n \frac{b-a}{2^k} \stackrel{?}{=} \frac{b-a}{2 \cdot 2^{k+1}} + \sum_{k=1}^n \frac{b-a}{2^k} $$
which is not true (for any $n$). With your claim, $a_{n+2} = \frac{a_{n+1} + a_n}{2} $ becomes
$$ a + \left(1-\frac{2n-3}{2^n}\right)(b-a) \stackrel ?= \frac 12 \left[a + \left(1-\frac{2n-5}{2^{n-1}}\right)(b-a) + a + \left(1-\frac{2n-7}{2^{n-2}}\right)(b-a) \right] $$
$$ -\frac{2n-3}{2^n}(b-a) \stackrel ?= -\frac{2n-5}{2^n}(b-a) - \frac{2n-7}{2^{n-1}}(b-a) $$
which is only true at $n=2$.
When trying to figure out a pattern of a recurrence relation sequence, it's often helpful to resist simplifying the numbers. So in a way between your "attempt 2" and "attempt 3":
$ a_2=a+(b-a) $
$ a_3=a+ \frac 12 (b-a) $
$ a_4=a+ \left(\frac 12 + \frac 14\right)(b-a) $
$ a_5=a+ \left(\frac 12 + \frac 18\right)(b-a) $
$ a_6=a+ \left(\frac 12 + \frac 18 + \frac{1}{16}\right)(b-a) $
$ a_7=a+ \left(\frac 12 + \frac 18 + \frac{1}{32}\right)(b-a) $
$ a_8=a+ \left(\frac 12 + \frac 18 + \frac{1}{32} + \frac{1}{64}\right)(b-a) $
$ a_9=a+ \left(\frac 12 + \frac 18 + \frac{1}{32} + \frac{1}{128}\right)(b-a) $
By now (or maybe not so many are necessary), we can see two patterns showing up, one for odd $n$ and an apparently different one for even $n$:
$$ a_{2m+1} = a + (b-a) \sum_{k=1}^m \frac{1}{2^{2k-1}} $$
$$ a_{2m} = a + (b-a) \sum_{k=1}^{m-1} \frac{1}{2^{2k-1}} + \frac{b-a}{2^{2m-2}} = a_{2m-1} + \frac{b-a}{2^{2m-2}} $$
The sums are geometric series:
$$ a_{2m+1} = a + \frac{\frac 12 - \frac{1}{2^{2m+1}}}{1-\frac 14}(b-a) = \frac 13 a + \frac 23 b - \frac{b-a}{3 \cdot 2^{2m-1}} $$
$$ a_{2m} = \frac 13 a + \frac 23 b - \frac{b-a}{3 \cdot 2^{2m-3}} + \frac{b-a}{2^{2m-2}} = \frac 13 a + \frac 23 b + \frac{b-a}{3 \cdot 2^{2m-2}} $$
Using a $(-1)^n$ to deal with the flipping sign, we can combine both cases into:
$$ a_n = \frac 13 a + \frac 23 b + \frac{b-a}{3} \left(-\frac 12\right)^{n-2} $$
Now to check the answer, $a_{n+2} = \frac{a_{n+1}+a_n}{2}$ becomes
$$ \frac 13 a + \frac 23 b + \frac{b-a}{3} \left(-\frac 12 \right)^n \stackrel ?= \frac 12 \left[\frac 13 a + \frac 23 b + \frac{b-a}{3} \left(-\frac 12 \right)^{n-1} + \frac 13 a + \frac 23 b + \frac{b-a}{3} \left(-\frac 12 \right)^{n-2}\right] $$
$$ \frac{b-a}{3} \left(-\frac 12\right)^n \stackrel ?= -\frac{b-a}{3} \left(-\frac 12\right)^n - \frac{b-a}{3}\left(-\frac 12\right)^{n-1} $$
which is true for all $n$. The equation also holds for $n=1$ ($a_1=a$) and $n=2$ ($a_2=b$), so by induction it is true for all positive integers $n$.
And finally, it's then obvious that
$$\lim_{n \to \infty} a_n = \frac13 a + \frac 23 b$$