In the Clifford algebra, geometric algebra, and applications, the author introduced the following operations. Some of the relevant notation: $(Proposition)$ denote iverson bracket, i.e. $(P) = 1$ iff $P$ is true, $0$ if otherwise. $A B = \tau(A, B) A \Delta B$, $\tau$ is some scalar function defined inductively.
Definition 2.7. For $A, B \in \mathcal{P}(X)$ we define
$$ \begin{array}{rll} A \wedge B & :=(A \cap B=\varnothing) A B & \text { outer product }\\ A \llcorner B & :=(A \subseteq B) A B & \text { left inner product } \\ A \lrcorner B & :=(A \supseteq B) A B & \text { right inner product } \\ A * B & :=(A=B) A B & \text { scalar product } \\ \langle A\rangle_k & :=(|A|=k) A & \text { projection on grade } k \\ A^{\star} & :=(-1)^{|A|} A & \text { grade involution } \\ A^{\dagger} & :=(-1)^{\binom{|A|}{2}} A & \text { reversion }\\ \end{array} $$ and extend linearly to $\mathcal{C l}(X, R, r)$.
How do i prove that these operations aren't dependent on the choice of basis that construct the isomorphism between geometric and combinatorial geometric algebra? Can these operation be defined using only the language of geometric algebra?