0

I'm trying to show that "If $a \in R$ is a unit, then -a is also a unit."

I started the attempt of the proof like this:

Say $ab=1$, then consider

$\begin{align*} a+(-a) = 0\\ \implies b(a+(-a))=0\\ \implies ba+b(-a)=0\\ \implies 1+b(-a)=0\\ \implies b(-a)=-1\\ \implies (-1)b(-a)=(-1)(-1)\\ \implies -b(-a)=(-1)(-1) \ \ \end{align*}$

So, if (-1)(-1)=1, I can conclude my proof. Any help on proving the thing would also be appreciated!

0 Answers0