Question : Evaluate $$I =\int_{0}^{\infty} \frac{\ln(2x)}{\sqrt{x(x+1)(2x+1)}} \mathbb{d}x$$ in terms of beta function.
My approach :
Put $2x=z$ $$I=\int_{0}^{\infty} \frac{\ln(z)}{\sqrt{z(z+1)(z+2)}} \mathbb{d}z$$ then by $z \to \frac{1}{z}$ we get $$I = \int_{0}^{\infty} \frac{-\ln(z)}{\sqrt{z(z+1)(2z+1)}} \mathbb{d}z$$ so by this result and the original integral expression we get $$2I = \int_{0}^{\infty} \frac{\ln(2)}{\sqrt{x(x+1)(2x+1)}} \mathbb{d}x$$ Now put $x=z^2$ $$I=\ln(2) \int_0^{\infty} \frac{1}{\sqrt{(z^2+1)(2z^2+1)}} \mathbb{d}z$$ Now I was thinking to write as half of $\int_{-\infty}^{\infty}$ and then try to use semicircular contour but that is turning out to be quite messy, so how to proceed further...