I'm going to expand on my comment since I didn't say anything about why $$\lim_{\nu \to 0} \int_{0}^{\infty} e^{-sx} \, Y_{\nu}(x) \, \mathrm dx = \int_{0}^{\infty} e^{-sx} \, Y_{0}(x) \, \mathrm dx. $$
For $s>0$ and $v > -1$, the Laplace transform of the Bessel function of first kind is $$\int_{0}^{\infty} e^{-sx} \, J_{\nu}(x) \, \mathrm dx = \frac{\left(\sqrt{s^{2}+1}-s \right)^{\nu}}{\sqrt{s^{2}+1}}.$$
Using the definition $$Y_{\nu}(x) = \frac{J_{\nu}(x)\cos(\nu \pi)-J_{-\nu}(x)}{\sin(\nu \pi)}, $$
we have $$ \begin{align} \int_{0}^{\infty} e^{-sx} \, Y_{\nu}(x) \, \mathrm dx &= \int_{0}^{\infty} e^{-sx} \, \frac{J_{\nu}(x)\cos(\nu \pi)-J_{-\nu}(x)}{\sin(\nu \pi)} \, \mathrm dx \\ &= \frac{\frac{(\sqrt{s^{2}+1}-s)^{\nu}}{\sqrt{s^{2}+1}}\cos(\nu \pi)- \frac{(\sqrt{s^{2}+1}-s)^{-\nu}}{\sqrt{s^{2}+1}}}{\sin( \nu \pi )} \end{align}$$ for $s>0$ and $|\nu| <1$ ($ \nu \ne 0 $).
And using L'Hopital's rule, we have $$ \begin{align} \lim_{\nu \to 0} \int_{0}^{\infty} e^{-sx} \, Y_{\nu}(x) \, \mathrm dx &= \frac{2}{\pi}\frac{1}{\sqrt{s^{2}+1}} \, \ln \left(\sqrt{s^{2}+1}-s \right) \\ &= -\frac{2}{\pi}\frac{1}{\sqrt{s^{2}+1}} \, \ln \left(\sqrt{s^{2}+1}+s \right) \\ &= -\frac{2}{\pi}\frac{\operatorname{arsinh}(s)}{\sqrt{s^{2}+1}}. \end{align}$$
We now need to argue that $$\lim_{\nu \to 0} \int_{0}^{\infty} e^{-sx} \, Y_{\nu}(x) \, \mathrm dx = \int_{0}^{\infty} e^{-sx} \, Y_{0}(x) \, \mathrm dx, $$ or at least that $$\lim_{\nu \to 0^{+}} \int_{0}^{\infty} e^{-sx} \, Y_{\nu}(x) \, \mathrm dx = \int_{0}^{\infty} e^{-sx} \, Y_{0}(x) \, \mathrm dx. $$
Let $y_{0,1}$ be the first positive zero of $Y_{0}(x)$.
If $0 \le \nu \le \alpha $, then $|Y_{\nu}(x)| \le |Y_{\alpha}(x)|$ on $(0,y_{0,1}]$. See this plot.
And on $(y_{0,1}, \infty)$, $|Y_{\nu}(x)| $ is bounded by a constant, which we'll call $A$.
To apply the dominated convergence theorem, let's break the integral into $$\int_{0}^{y_{0,1}} e^{-sx} \, Y_{\nu}(x) \, \mathrm dx + \int_{y_{0,1}}^{\infty} e^{-sx} \, Y_{\nu}(x) \, \mathrm dx , $$ and let's assume that $0 \le \nu \le 1/2$.
For the integrand of the first integral, we can use $|Y_{1/2}(x)| = \sqrt{\frac{2}{\pi}} \frac{\cos(x)}{\sqrt{x}}$ as the dominating function.
And for the integrand of the second integral. we can use $A e^{-sx}$, $s>0$, as the dominating function.
It then follows that $$\lim_{\nu \to 0^{+}} \int_{0}^{\infty} e^{-sx} \, Y_{\nu}(x) \, \mathrm dx = \int_{0}^{\infty} e^{-sx} \, Y_{0}(x) \, \mathrm dx. $$