Actually, it is more convenient to solve harmonic-type series by finding the explicit value of digamma function, other than doing the integral of its generating function, we may begin with
$$
S=\sum_{n=1}^{\infty}\left(\frac3{3n+1}-\frac5{5n+2}\right)=\sum_{n=1}^{\infty}\left(\frac3{3n+1}-\frac1{n}\right) - \sum_{n=1}^{\infty}\left(\frac5{5n+2}-\frac1{n}\right)
$$
key to this sum is to find the explicit value of digamma function of $1/3$ and $1/5$, yet actually, we do not need a complete knowledge over digamma function.
A generalized device to do this by hand, we may recall this post. Here is the exact example how to solve those simple cases like $1/3$ and $1/5$ by the same manner.
One should be noted that
$$
\sum_{n=1}^{\infty}\left(\frac1{3n+1}-\frac1{3n}\right) = \sum_{n=1}^{\infty}\left(\frac0{3n+2} + \frac1{3n+1}+\frac{-1}{3n}\right)
$$
we consider the unit vector on the unit circle of complex plane, periodically rotating around the origin with angular step of $\frac{2\pi}{3}$, start with $-\frac{5\pi}{6}$, this shows
$$
\begin{aligned}
\cos\left(\frac{\pi}{6}\right)\left(\sum_{n=1}^{\infty}\left(\frac1{3n+1}-\frac1{3n}\right) + s_0 \right)
&= \Re\left\{\sum_{n=1}^{\infty}\frac1{n}\exp\left[\left(\frac{2\pi n}{3}-\frac{5\pi}{6}\right)i\right]\right\} \\
&= \Re\left\{-e^{-\frac{5\pi i}{6}}\log\left(1-e^{\frac{2\pi i}{3}}\right)\right\}
\end{aligned}
$$
where $s_0=1$ is the very first item as $n=0$ that we do not count in the left sum. This identity easily derives
$$
\sum_{n=1}^{\infty}\left(\frac1{3n+1}-\frac1{3n}\right) = -1 + \frac2{\sqrt{3}}\,\Re\left\{-e^{-\frac{5\pi i}{6}}\log\left(1-e^{\frac{2\pi i}{3}}\right)\right\}
$$
complex simplify is tedious, but such result already promise a closed form of this digamma-related sum, which finally simplified as
$$
\sum_{n=1}^{\infty}\left(\frac3{3n+1}-\frac1{n}\right) = -3 + \frac{\pi}{2\sqrt{3}} + \frac{3\ln3}{2}
$$
By the same arguments, denote that
$$
a=\sin\frac{2\pi}{5},\quad b=\sin\frac{\pi}{5}, \quad a= \frac{1+\sqrt{5}}{2} b = \phi b
$$
consider the periodical unit vector with angular step of $-\frac{2\pi}{5}$ and $-\frac{4\pi}{5}$ (note the minus direction), this time staring at $\frac{9\pi}{10}$ and $-\frac{7\pi}{10}$, we have
$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{a}{5n+2}-\frac{a}{5n} + \frac{b}{5n+3} - \frac{b}{5n+4} \right) + s_0
&= \Re\left\{\sum_{n=1}^{\infty}\frac1{n}\exp\left[\left(-\frac{2\pi n}{5}+\frac{9\pi}{10}\right)i\right]\right\} \\
&= \Re\left\{-e^{\frac{9\pi i}{10}}\log\left(1-e^{-\frac{2\pi i}{5}}\right)\right\}
\end{aligned}
$$
$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{b}{5n+2}-\frac{b}{5n} - \frac{a}{5n+3} + \frac{a}{5n+4} \right) + s'_0
&= \Re\left\{\sum_{n=1}^{\infty}\frac1{n}\exp\left[\left(-\frac{4\pi n}{5}-\frac{7\pi}{10}\right)i\right]\right\} \\
&= \Re\left\{-e^{\frac{-7\pi i}{10}}\log\left(1-e^{-\frac{4\pi i}{5}}\right)\right\}
\end{aligned}
$$
where $s_0=\frac{a}{2}+\frac{b}{3}-\frac{b}4$, $s'_0=\frac{b}{2}-\frac{a}{3}+\frac{a}4$, also note that $\frac{a}{b} + \frac{b}{a} = \phi + \frac1{\phi} = \sqrt{5}$, hence cancelling the 3rd and 4th item not needed
$$
\sum_{n=1}^{\infty}\left(\frac{1}{5n+2}-\frac{1}{5n} \right) = -\frac1{2} + \frac{1}{\sqrt{5}b}\Re\left\{-e^{\frac{9\pi i}{10}}\log\left(1-e^{-\frac{2\pi i}{5}}\right)\right\} + \frac{1}{\sqrt{5}a}\Re\left\{-e^{\frac{-7\pi i}{10}}\log\left(1-e^{-\frac{4\pi i}{5}}\right)\right\}
$$
with some very tedious simplify (may suggest doing this step with Mathematica), finally we have
$$
\sum_{n=1}^{\infty}\left(\frac{5}{5n+2}-\frac{1}{n} \right) = -\frac{5}{2} + \frac{\pi}{2}\sqrt{1-\frac{2}{\sqrt{5}}} - \frac{\sqrt{5}}{2}\operatorname{arcoth}\sqrt{5} + \frac{5\ln5}{4}
$$
those grant you the final answer done by hand.