Solve $$\cos x \sin x + |\cos x + \sin x| = 1.$$
My sister sent me this problem. I am helping her for it, but since I'm not exactly at my best mental state, I want someone to see if I get the result right. Thanks!
I start by defining
$$ y = |\cos x + \sin x| \Rightarrow y \geq 0 $$
and note that
$$ y^2 = \cos^2x + \sin^2x + 2\sin x \cos x \\ \Rightarrow y^2 = 1 + 2\sin x \cos x \\ \Rightarrow \cos x \sin x = \frac{y^2 - 1}{2} $$
Now I can rewrite the initial equation
$$ \cos x \sin x + |\cos x + \sin x| = 1 \\ \Rightarrow \frac{y^2 - 1}{2} + y = 1 \Rightarrow y^2 - 1 + 2y = 2 \Rightarrow y^2 + 2y - 3 = 0 $$
The last equation has two solutions: $y = 1$ or $y = -3$. Since $y \geq 0$, we take $y = 1$.
With $y = 1$, we have:
$$ |\cos x + \sin x | = 1 \\ \Rightarrow \left| \sqrt{2} \cos\left(x - \frac{\pi}{4}\right) \right| = 1 \\ \Rightarrow \left| \cos\left(x - \frac{\pi}{4}\right) \right| = \frac{1}{\sqrt{2}} \\ \Rightarrow \begin{cases} \cos\left(x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \Rightarrow x - \frac{\pi}{4} = \pm \frac{\pi}{4} + 2\pi k \Rightarrow \begin{cases} x = \frac{\pi}{2} + 2\pi k \\ x = 2\pi k\end{cases} \\ \cos\left(x - \frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} \Rightarrow x - \frac{\pi}{4} = \pm \frac{3\pi}{4} + 2\pi k \Rightarrow \begin{cases}x = \pi + 2\pi k \\ x = -\frac{\pi}{2} + 2\pi k\end{cases} \end{cases} \forall k \in \mathbb{Z} \\\\ \Rightarrow \boxed{ \begin{cases} x = \pm \frac{\pi}{2} + 2\pi k \\ x = k\pi \end{cases} \forall k \in \mathbb{Z} } $$
I want to know if my solution is right. What do you think?