From Other approaches to $\int_{0}^{1} \frac{K\left ( x \right ) }{\sqrt{3-x} } \text{d}x$, I want to know the transformation about $$ \int_0^1\frac{K(x)}{\sqrt{3-x}}dx=\frac{1}{\sqrt2}\int_0^1\frac{K'(x)}{\sqrt{(1+x)(1+2x)}}dx\overset{?}{=}2\int_0^1\frac{K'(\frac{1-x^2}{2})}{\sqrt{1+x^2}}dx $$
The right integral is linked to the Watson triple integral Prove the closed-form of $\int_{0}^{1}\frac{K^\prime\left (\frac{1-x^2}{2}\right)}{\sqrt{1+x^2}}\text{d}x$
$$ \int_0^1\frac{K'(\frac{1-x^2}{2})}{\sqrt{1+x^2}}dx= \frac23\int_0^1\frac{K(\frac{1+x^2}{2})}{\sqrt{1-x^2}}dx= \frac{2\sqrt2}{3\pi}\iiint\frac{dxdydz}{3-\cos x-\cos y-\cos z} $$ Where $xyz\in[0,\pi]^3$ , and $$ \iiint\frac{dxdydz}{3-\cos x-\cos y-\cos z}= \frac{\sqrt6}{96}\times\Gamma\left(\frac{1}{24}\right)\Gamma\left(\frac{5}{24}\right)\Gamma\left(\frac{7}{24}\right)\Gamma\left(\frac{11}{24}\right) $$ How do I get the following relation $$ \int_0^1\frac{K(x)}{\sqrt{3-x}}dx\overset{?}{=}\frac43\int_0^1\frac{K(\frac{1+x^2}{2})}{\sqrt{1-x^2}}dx $$ Does this mean $$ \int_{-1}^0\frac{K'(-x)}{\sqrt{(1-x)(1-2x)}}dx\overset{?}{=} \frac{4}{3i}\int_{\frac12}^{1}\frac{K(x)}{\sqrt{(1-x)(1-2x)}}dx $$ And one of my previous questions An integral about elliptic integral
Thanks ( ̄▽ ̄)ブ