$
S = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, \, (x-1)^2 + y^2 \leq 1, \, z \geq 0 \}
$
This set $S$ is the portion of the sphere $x^2 + y^2 + z^2 = 4$ (radius $2$) that lies within the cylinder $(x-1)^2 + y^2 \leq 1$ (radius $1$, centered at $(1, 0)$) and above the plane $z = 0$
$1.$ The sphere $x^2 + y^2 + z^2 = 4$ is centered at the origin with radius $2$
$2.$ The cylinder $(x-1)^2 + y^2 \leq 1$ is centered at $(1, 0, 0)$ with radius $1$
$3.$ The intersection of the sphere and the cylinder is a curve on the sphere. The region $S$ is the portion of the sphere that lies inside the cylinder and above the $z = 0$ plane
We parameterize the sphere using spherical coordinates
$
x = 2 \sin \phi \cos \theta, \quad y = 2 \sin \phi \sin \theta, \quad z = 2 \cos \phi
$
where $\phi \in [0, \pi/2]$ (since $z \geq 0$) and $\theta \in [0, 2\pi)$
The surface area element on the sphere is
$
dS = (2 \sin \phi) \cdot (2 \, d\phi \, d\theta) = 4 \sin \phi \, d\phi \, d\theta
$
The cylinder $(x-1)^2 + y^2 \leq 1$ intersects the sphere. Substituting the spherical coordinates into the cylinder equation:
$
(x-1)^2 + y^2 = (2 \sin \phi \cos \theta - 1)^2 + (2 \sin \phi \sin \theta)^2 \leq 1
$
Expanding:
$
(2 \sin \phi \cos \theta - 1)^2 + (2 \sin \phi \sin \theta)^2 \leq 1
$
Simplify
$
4 \sin^2 \phi \cos^2 \theta - 4 \sin \phi \cos \theta + 1 + 4 \sin^2 \phi \sin^2 \theta \leq 1
$
Combine terms
$
4 \sin^2 \phi (\cos^2 \theta + \sin^2 \theta) - 4 \sin \phi \cos \theta + 1 \leq 1
$
Since $\cos^2 \theta + \sin^2 \theta = 1$, this simplifies to
$
4 \sin^2 \phi - 4 \sin \phi \cos \theta \leq 0
$
Divide through by $4 \sin \phi$ (assuming $\sin \phi \neq 0$)
$
\sin \phi - \cos \theta \leq 0
$
Thus, the condition becomes
$
\sin \phi \leq \cos \theta
$
The inequality $\sin \phi \leq \cos \theta$ defines the region of integration. To find the limits
$1.$ For a fixed $\theta$, $\phi$ ranges from $0$ to $\arcsin(\cos \theta)$.
$2.$ The angle $\theta$ ranges from $0$ to $2\pi$, but due to symmetry, we can integrate over $\theta \in [-\pi/2, \pi/2]$ and multiply by $2$.
The surface area $A$ is given by
$
A = \iint_S dS = \int_{\theta = -\pi/2}^{\pi/2} \int_{\phi = 0}^{\arcsin(\cos \theta)} 4 \sin \phi \, d\phi \, d\theta
$
First, evaluate the inner integral
$
\int_{\phi = 0}^{\arcsin(\cos \theta)} 4 \sin \phi \, d\phi = 4 \left[ -\cos \phi \right]_0^{\arcsin(\cos \theta)} = 4 \left( -\cos(\arcsin(\cos \theta)) + \cos(0) \right)
$
Simplify $\cos(\arcsin(\cos \theta))$
$
\cos(\arcsin(\cos \theta)) = \sqrt{1 - \cos^2 \theta} = |\sin \theta|
$
Thus, the inner integral becomes
$
4 \left( -|\sin \theta| + 1 \right) = 4(1 - |\sin \theta|)
$
Now, integrate over $\theta$
$
A = \int_{\theta = -\pi/2}^{\pi/2} 4(1 - |\sin \theta|) \, d\theta
$
Split the integral
$
A = 4 \int_{-\pi/2}^{\pi/2} 1 \, d\theta - 4 \int_{-\pi/2}^{\pi/2} |\sin \theta| \, d\theta
$
Evaluate the integrals
$1.$ $\int_{-\pi/2}^{\pi/2} 1 \, d\theta = \pi$
$2.$ $\int_{-\pi/2}^{\pi/2} |\sin \theta| \, d\theta = 2$
Thus
$
A = 4\pi - 4\times 2 = 4\pi-8
$
The surface area of $S$ is
$$
\boxed{4\pi-8}
$$