Let $V$ be the set of all symmetric $n\times n$ matrices over $\Bbb C$ $(A'=A)$,and $U$ be the set of all antisymmetric $n\times n$ matrices over $\Bbb C$ $(A'=-A)$. For $A \in V$, define $$ \varphi : V \rightarrow U, X \mapsto {AX} - {XA}. $$ Prove that $\varphi$ is surjective if and only if the characteristic function of $A$ has no multiple root in $\mathbb{C}$.
$\Leftarrow$: It is easy, since $A$ is diagonalizable, invertible $P$ exists such that $P^{-1}AP=diag(a_1,\cdots,a_n)$. Let $Y=P^{-1}XP, C=P^{-1}BP$ for any $B\in U$, $y_{ii}=0, y_{ij}=\frac{c_{ij}}{a_i-a_j}$ then $X=PYP^{-1}$ satisfies $AX-XA=B$.
$\Rightarrow$: Can we use the $\Leftarrow$ part? We do not know the diagonalizability of $A$. The symmetry of $A$, how to use?