Background Information
In my previous post, I asked how to derive the limit definition of $e$ from the series definition, and the answer given by @peek-a-boo is very thought-provoking. I followed his idea, and tried to cook up an argument which derives the limit definition of $e^x$ for $x \in \mathbb{R}$ from the series definition.
The series definition and limit definition are listed below:
Definition 1. (through series) $$e^x := \sum_{n=0}^{\infty} \frac{x^n}{n!} , x \in \mathbb{R}$$ Definition 2. (through limit) $$e^x := \lim_{n\rightarrow \infty}\left(1 + \frac{x}{n} \right)^n , x \in \mathbb{R}$$
And here are some important theorems and lemma that will be used in the proof:
a. Monotone convergence theorem (for a monotone sequence of real numbers)
a1. Let $(a_n)$ be a real non-decreasing sequence which is bounded above, then its limit exists when $n \rightarrow \infty$, and we have $$\lim_{n \rightarrow \infty} a_n = \sup_n a_n < \infty$$ a2. Let $(a_n)$ be a real non-increasing sequence which is bounded below, then its limit exists when $n \rightarrow \infty$, and we have $$\lim_{n \rightarrow \infty} a_n = \inf_n a_n > -\infty$$
b. Ratio test
Theorem. Let $(a_n)$ be a sequence of real or complex numbers, and let $L = \lim_{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_n}\right|$, then we have: $$\lim_{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_n}\right| = L: \begin{cases} <1 &, \text{$(a_n)$ converges absolutely} \\ >1 &, \text{$(a_n)$ diverges} \\ =1 &, \text{the test is inconclusive} \end{cases}$$
c. One important lemma for convergence of sequences
Lemma. Let $(a_n)$ be a sequence of real or complex terms, s.t. $\lim_{n\rightarrow \infty} n(a_n - 1) = 0$, then we have $\lim_{n \rightarrow \infty} a_n^n = 1$.
Then I will post my own proof, and I expect more different ideas on it.
My Attempt
Let $s_n = \frac{x^n}{n!}$. Then fix some arbitrary $x \in \mathbb{R}$, by ratio test, we have
$$\begin{aligned} \lim_{n\rightarrow \infty} \left| \frac{s_{n+1}}{s_n} \right| &= \lim_{n\rightarrow \infty} \left| \frac{x^{n+1}}{(n+1)!} \frac{n!}{x^n} \right|\\ &= \lim_{n\rightarrow \infty} \left| \frac{x}{n+1}\right| \\ &= 0 \\ &< 1 \end{aligned}$$
So we have the series
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
converges absolutely for any $x \in \mathbb{R}$, and absolute convergence implies its convergence. So we can indeed define $e^x$ as
$$\forall x \in \mathbb{R}, e^x := \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
Then we will derive the limit definition from the series definition. Suppose $x\geq 0$, then we let
$$a_n = \left( 1 + \frac{x}{n} \right)^n$$
and by Binomial Theorem, we have
$$\begin{aligned} a_n &=\left( 1 + \frac{x}{n} \right)^n \\ &= \sum_{k=0}^{n} \binom{n}{k} \frac{x^k}{n^k} \\ &= \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} \frac{x^k}{n^k} \\ &= \sum_{k=0}^{n} \frac{x^k}{k!} \frac{n-k+1}{n} \frac{n-k+2}{n} \cdots \frac{n-1}{n} \frac{n}{n} \\ &= \sum_{k=0}^{n} \frac{x^k}{k!} \prod_{j=0}^{k-1} \left( 1 - \frac{j}{n} \right) \\ &\leq \sum_{k=0}^{n} \frac{x^k}{k!} \\ &= s_n \end{aligned}$$
Then, for the existence of the limit of $(a_n)$, since $x\geq 0$, we have
$$\begin{aligned} a_{n+1} &= \sum_{k=0}^{n+1} \frac{x^k}{k!} \prod_{j=0}^{k-1} \left( 1 - \frac{j}{n+1} \right) \\ &\geq \sum_{k=0}^{n+1} \frac{x^k}{k!} \prod_{j=0}^{k-1} \left( 1 - \frac{j}{n} \right) \\ &\geq \sum_{k=0}^{n} \frac{x^k}{k!} \prod_{j=0}^{k-1} \left( 1 - \frac{j}{n} \right) \\ &= a_n \end{aligned}$$
and this means $(a_n)$ is a non-decreasing sequence which is bounded above, so by monotone convergence theorem, the limit of $(a_n)$ exists and we have
$$\lim_{n \rightarrow \infty} a_n = \sup_n a_n \leq \lim_{n \rightarrow \infty} s_n$$
Then, let $m \in \mathbb{N}$ be s.t. $m<n$, then we have
$$\begin{aligned} a_n &= \sum_{k=0}^{n} \frac{x^k}{k!} \prod_{j=0}^{k-1} \left( 1 - \frac{j}{n} \right) \\ &\geq \sum_{k=0}^{m} \frac{x^k}{k!} \prod_{j=0}^{k-1} \left( 1 - \frac{j}{n} \right) \\ \end{aligned}$$
and this implies
$$\begin{aligned} \lim_{n\rightarrow \infty}a_n &\geq \lim_{n\rightarrow \infty} \sum_{k=0}^{m} \frac{x^k}{k!} \prod_{j=0}^{k-1} \left( 1 - \frac{j}{n} \right) \\ &= \sum_{k=0}^{m} \frac{x^k}{k!} \lim_{n\rightarrow \infty}\prod_{j=0}^{k-1} \left( 1 - \frac{j}{n} \right) \\ &= \sum_{k=0}^{m} \frac{x^k}{k!} \\ &= s_m \end{aligned}$$
and it again implies
$$\lim_{m\rightarrow \infty}s_m \leq \lim_{n\rightarrow \infty}a_n$$
Thus, we get
$$e^x = \lim_{m\rightarrow \infty}s_m \leq \lim_{n\rightarrow \infty}a_n \leq \lim_{n\rightarrow \infty}s_n = e^x$$
and by squeeze theorem, we have
$$\forall x \geq 0, \lim_{n\rightarrow \infty}a_n = e^x$$
For the case where $x\leq0$, given the equation
$$\left(1 + \frac{x}{n} \right)^n \left(1 - \frac{x}{n} \right)^n = \left(1 - \frac{x^2}{n^2} \right)^n$$
since we have proved
$$\forall x \geq 0, \lim_{n\rightarrow \infty} \left(1 + \frac{x}{n} \right)^n = e^x$$
if we can prove
$$\lim_{n\rightarrow \infty} \left(1 - \frac{x^2}{n^2} \right)^n = 1$$
then we will get
$$\forall x \geq 0, \lim_{n\rightarrow \infty} \left(1 - \frac{x}{n} \right)^n = e^{-x}$$
which is equivalent to the case for $x\leq 0$. Therefore, by the lemma, fix an arbitrary $x \in \mathbb{R}$, and we have
$$\lim_{n\rightarrow \infty} n\left(1 - \left( 1 - \frac{x^2}{n^2}\right)\right) = \lim_{n\rightarrow \infty} \frac{x^2}{n} = 0$$
and this implies that we indeed have $$\lim_{n\rightarrow \infty}\left(1 - \frac{x^2}{n^2} \right)^n = 1 $$
and thus we indeed get
$$\forall x \geq 0, \lim_{n\rightarrow \infty} \left(1 - \frac{x}{n} \right)^n = e^{-x}$$
which is equivalent to
$$\forall x \leq 0, \lim_{n\rightarrow \infty} \left(1 + \frac{x}{n} \right)^n = e^{x}$$
Hence, we have
$$\forall x \in \mathbb{R}, \sum_{n=0}^{\infty} \frac{x^n}{n!} = \lim_{n\rightarrow \infty} \left(1 + \frac{x}{n} \right)^n = e^{x}$$
My Question
The proof is quite algebra-heavy, and I am wondering whether there are any different proofs, for example those using clever theorems/results in real analysis. And as @peek-a-boo has said in his comment, maybe the Dominated Convergence Theorem or other interesting theorems can offer a very simple proof. But I currently have no idea about it.
All ideas are welcome. Thanks for your help!