A Short Comment(it's better to have a general form of the hypergeometric function in terms of elliptic integrals.)
Recall this integral representation of Gauss hypergeometric series,
$$
\int_{0}^{1} x^{b-1}(1-x)^{c-b-1}\left ( 1-tx \right )^{-a}
\text{d}x
=\frac{\Gamma\left ( b \right )\Gamma\left ( c-b \right ) }{
\Gamma\left (c \right ) }
\,_2F_1\left ( a,b;c;t \right ).
$$
Now that you have the last integral formulation, one can reduce it into a convenient form,
$$
I=\int_{0}^{1} \frac{1}{\sqrt[4]{1-x^2}
\sqrt[4]{\left ( 2+\sqrt{3} \right )/\sqrt{3}
-x^2 } } \text{d}x
=\frac{\sqrt{2}\sqrt[4]{\sqrt{3}\left ( 2-\sqrt{3} \right ) } }{\sqrt{\pi} }
\Gamma\left ( \frac34 \right )^2
\,_2F_1\left ( \frac14,\frac12;\frac54;\sqrt{3} \left ( 2-\sqrt{3} \right ) \right ).
$$
Note that the above expression could be written as follows,
$$
I=\frac{\sqrt{2}\,\Gamma\left ( \frac34 \right )^2 }{\sqrt{\pi} }
\int_{0}^{\sqrt[4]{\sqrt{3}\left ( 2-\sqrt{3} \right )}}
\frac{1}{\sqrt{1-x^4} }\text{d}x.
$$
Make the substitution $x=\frac{1}{\sqrt{z}}$, then
$$
\int_{0}^{\alpha}
\frac{1}{\sqrt{1-x^4} }\text{d}x
=\frac12\int_{\frac1{\alpha^2}}^{\infty}
\frac{1}{\sqrt{x^3-x} } \text{d}x,\qquad \alpha=\sqrt[4]{\sqrt{3}\left ( 2-\sqrt{3} \right )}.
$$
Employing the Weierstrass elliptic function $\wp(z)$ with $g_2=1,g_3=0$ and $4\wp(z)^3-g_2\wp(z)-g_3=\wp^\prime(z)^2$, we write
$$
I=\frac{\Gamma\left ( \frac34 \right )^2 }{\sqrt{\pi} }\int_{\frac12\sqrt{\frac{2+\sqrt{3} }{\sqrt{3}} } }^{\infty}
\frac{1}{\sqrt{4x^3-x} } \text{d}x=\frac{\Gamma\left ( \frac34 \right )^2 }{\sqrt{\pi} }\omega,
$$
where $\wp(\omega)=\frac12\sqrt{\frac{2+\sqrt{3} }{\sqrt{3}} }$.
The real half-period is related to one of the roots $4x^3-x=0\rightarrow x=\frac12$, given by
$\frac{\omega_0}{2} =\int_{\frac12}^{\infty}
\frac{1}{\sqrt{4x^3-x} } \text{d}x=
\frac{\Gamma\left ( \frac14 \right )^2}{4\sqrt{\pi} }$.
One may use the addition formula to evaluate the 3-torsion point $\wp(\omega_0/3)=\frac12\sqrt{\frac{2+\sqrt{3} }{\sqrt{3}} }$, where $z_1,z_2$ are arbitrary complex numbers that make sense,
$$\wp\left(z_1-z_2;g_2,g_3\right)\wp\left(z_1+z_2;g_2,g_3\right)=\frac{\left(\wp\left(z_1;g_2,g_3\right)\wp\left(z_2;g_2,g_3\right)+\frac{g_2}{4}\right){}^2+g_3\left(\wp\left(z_1;g_2,g_3\right)+\wp\left(z_2;g_2,g_3\right)\right)}{\left(\wp\left(z_1;g_2,g_3\right)-\wp\left(z_2;g_2,g_3\right)\right){}^2}.$$
In our case it is
$$
\wp\left ( z_1+z_2 \right ) \wp\left ( z_1-z_2 \right )
=\left ( \frac{\wp\left ( z_{1} \right )\wp\left ( z_{2} \right )
+\frac14}{\wp\left ( z_{1} \right )-\wp\left ( z_{2} \right )} \right )^2.
$$
While $\wp(\omega_0/2)=\frac12$ has been evaluated, we substitute $(z_1,z_2)=(\omega_0/3,\omega_0/6)$ and $(z_1,z_2)=(\omega_0/2,\omega_0/3)$ respectively, giving
$$
\wp\left(\frac{\omega_0}{2} \right ) \wp\left ( \frac{\omega_0}{6}\right )
=\left ( \frac{\wp\left ( \frac{\omega_0}{3}\right )\wp\left ( \frac{\omega_0}{6} \right )
+\frac14}{\wp\left ( \frac{\omega_0}{3} \right )-\wp\left (\frac{\omega_0}{6} \right )} \right )^2,
$$
$$
\wp\left(\frac{\omega_0}{6} \right ) \wp\left ( \frac{5\omega_0}{6}\right )
=\left ( \frac{\wp\left ( \frac{\omega_0}{2}\right )\wp\left ( \frac{\omega_0}{3} \right )
+\frac14}{\wp\left ( \frac{\omega_0}{2} \right )-\wp\left (\frac{\omega_0}{3} \right )} \right )^2.
$$
By periodicity, $\wp\left ( \frac{5\omega_0}{6}\right )=\wp\left ( \frac{-\omega_0}{6}\right )$, and it's an even function, we have $\wp\left ( \frac{5\omega_0}{6}\right )=\wp\left ( \frac{\omega_0}{6}\right )$. Solving the system we obtain
$$
\wp\left ( \frac{\omega_0}{3}\right )
=\frac{1}{2} \sqrt{\frac{2+\sqrt{3} }{\sqrt{3} } }
,\wp\left ( \frac{\omega_0}{6}\right )
=\frac{1}{2} \left ( 1+\sqrt{3}+\sqrt{3+2\sqrt{3} } \right ).
$$
Hence we have
$$
I=\frac{\Gamma\left ( \frac34 \right )^2 }{\sqrt{\pi} }
\cdot\frac{1}{3} \frac{\Gamma\left ( \frac14 \right )^2}{2\sqrt{\pi} }
=\frac{\pi}{3} .
$$