Given the equation:
$$x^9+c_1x^5+c_2x^4+\dots+c_6=0$$
and the Tschirnhaus transformation:
$$x^8+ax^7+bx^6+cx^5+dx^4+ex^3+fx^2+\color{red}mx+n-y=0$$
Yields:
$$y^9+C_1y^8+C_2y^7+C_3y^6+\dots+C_9=0$$
But because the original nonic is missing $3$ terms $(x^8,x^7,x^6)$, then $C_1,C_2,C_3$ have the form:
$$C_1=\alpha_1$$
$$C_2=\alpha_2m+\alpha_3$$
$$C_3=\alpha_4m^2+\alpha_5m+\alpha_6$$
with the first three $C_k$ also missing their leading terms $(m,m^2,m^3)$ respectively, and the $\alpha_k$ are in the other unknowns. The objective is to make all six $\alpha_k$ vanish, and that frees up $m$ to solve for $C_4$.
For example, consider the reduced nonic equation:
$$x^9-x^5-3x^4+2x^3+x^2+x-3=0$$
After the transformation, we get the following explicit expressions for the six $\alpha_k$:
$$\alpha_1=7a+12b-15c-4d-9n+4$$
$$\alpha_2=4a+7b+12c-15d-4e-54$$
$$\alpha_3=-105a^2+19ab-85ac+49ad-25ae-54af-56an+163a+82b^2-103bc-73bd-54be+4bf-96bn-211b+100c^2+6cd+4ce+7cf+120cn-125c+10d^2+7de+12df+32dn+4d+6e^2-15ef+77e-2f^2-25f+36n^2-32n+194$$
$$\alpha_4=-54a+4b+7c+12d-15e-4f-25$$
$$\alpha_5=163a^2-421ab-106ac-81ad+126ae-50af-28an+382a+19b^2+79bc-54bd-98be-108bf-49bn-350b-103c^2+127cd-48ce+8cf-84cn+340c+6d^2+24de+14df+105dn+26d+7e^2+24ef+28en+24e-15f^2+154f+378n-284$$
$$\alpha_6=-462a^3-144a^2b+1031a^2c+251a^2d-243a^2e-6a^2f+735a^2n-1202a^2-890ab^2-922abc+537abd+66abe-350abf-133abn+2207ab+332ac^2-449acd+673ace+341acf+595acn+322ac-103ad^2-369ade+170adf-343adn-1572ad-23ae^2-65aef+175aen-977ae+63af^2+378afn-527af+196an^2-1141an-2058a+172b^3-374b^2c-256b^2d-513b^2e-211b^2f-574b^2n-1209b^2+417bc^2+409bcd+340bce-106bcf+721bcn+1325bc-39bd^2+170bde+168bdf+511bdn-432bd+92be^2-26bef+378ben+572be-49bf^2-28bfn+460bf+336bn^2+1477bn-435b-330c^3+151c^2d-125c^2e-85c^2f-700c^2n+667c^2+cd^2-81cde-54cdf-42cdn-152cd-13ce^2+175cef-28cen-395ce-24cf^2-49cfn+673cf-420cn^2+875cn-2008c-12d^3+49d^2e-73d^2f-70d^2n+332d^2-49de^2-48def-49den-10de+12df^2-84dfn-370df-112dn^2-28dn+875d-18e^3+4e^2f-42e^2n-235e^2+7ef^2+105efn-190ef-539en-376e+4f^3+14f^2n+12f^2+175fn-808f-84n^3+112n^2-1358n+1100$$
Let $\alpha_1=\alpha_2=\alpha_4=0$ and solve for $(e,f,n)$,
$$e=(4a+7b+12c-15d-54)/4$$
$$f=(-276a-89b-152c+273d+710)/16$$
$$n=(7a+12b-15c-4d+4)/9$$
Substitute into $\alpha_3=\alpha_5=\alpha_6=0$,
$$A=517648a^2+289608ab+724416ac-1206920ad-3077296a+4329b^2+203184bc-315618bd-761196b+283968c^2-950064cd-2381088c+741049d^2+3768268d+4814404$$
$$B=-952048a^2-478584ab-1480512ac+2333496ad+5954256a-58383b^2-416976bc+616334bd+1563188b-588224c^2+1835856cd+4686048c-1446207d^2-7338708d-9321756$$
$$C=-110646640a^3-941644584a^2b-899045712a^2c+1047198072a^2d+2373426528a^2-519339303ab^2-1857906072abc+2795671494abd+6823612620ab-1115458560ac^2+3222557208acd+7710590160ac-2162947359ad^2-10313261148ad-12157798476a-77234661b^3-487774305b^2c+745307352b^2d+1832449041b^2-869860944bc^2+2688176322bcd+6629799132bc-2055308913bd^2-10107354942bd-12394513008b-389765952c^3+1789379856c^2d+4372233120c^2-2674272033cd^2-13038155100cd-15830900100c+1280208574d^3+9351795597d^2+22642682196d+18165319028$$
Currently we have $4$ parameters, to extend that into $7$ we do the following substitution:
$$
a=a\\
b=b_1+b_2\\
c=c_1+c_2\\
d=d_1+d_2$$
to get $1+6=7$. Now split $A=B=0$ into the following parts:
$$A=A_{20}+A_{11}+A_{02}+A_{10}+A_{01}+A_{00}\\
B=B_{20}+B_{11}+B_{02}+B_{10}+B_{01}+B_{00}$$
where $A_{ij},B_{ij}$ has $(i,j)$ being the corresponding degree of $(b_1,c_1,d_1),(a,b_2,c_2,d_2)$.
First pair:
$$A_{20}=4329b_1^2+203184b_1c_1-315618b_1d_1+283968c_1^2-950064c_1d_1+741049d_1^2=0$$
$$B_{20}=-58383b_1^2-416976b_1c_1+616334b_1d_1-588224c_1^2+1835856c_1d_1-1446207d_1^2=0$$
yields the solution $\color{blue}{(c_1,d_1)}$:
$$c_1\approx(-0.2942035624831439143 - 1.0155324937347195244 i) b_1\\
d_1\approx(0.1586424132629645759 - 0.5849006781087639042 i) b_1$$
with "$b_1$" to be determined later.
Second pair:
$$M_1=A_{11}+A_{10}=289608ab_1+724416ac_1-1206920ad_1+8658b_1b_2+203184b_1c_2+203184b_2c_1-315618b_1d_2-315618b_2d_1-761196b_1+567936c_1c_2-950064c_1d_2-950064c_2d_1-2381088c_1+1482098d_1d_2+3768268d_1=0$$
$$N_1=B_{11}+B_{10}=-478584ab_1-1480512ac_1+2333496ad_1-116766b_1b_2-416976b_1c_2-416976b_2c_1+616334b_1d_2+616334b_2d_1+1563188b_1-1176448c_1c_2+1835856c_1d_2+1835856c_2d_1+4686048c_1-2892414d_1d_2-7338708d_1=0$$
Since this is only linear, it is easy to solve $M_1=N_1=0$ for $\color{blue}{(c_2,d_2)}$. What remains to find of the 7 parameters are $(a,b_1,b_2)$.
Third pair:
$$M_2=A_{02}+A_{01}+A_{00}=517648a^2+289608ab_2+724416ac_2-1206920ad_2-3077296a+4329b_2^2+203184b_2c_2-315618b_2d_2-761196b_2+283968c_2^2-950064c_2d_2-2381088c_2+741049d_2^2+3768268d_2+4814404=0$$
$$N_2=B_{02}+B_{01}+B_{00}=-952048a^2-478584ab_2-1480512ac_2+2333496ad_2+5954256a-58383b_2^2-416976b_2c_2+616334b_2d_2+1563188b_2-588224c_2^2+1835856c_2d_2+4686048c_2-1446207d_2^2-7338708d_2-9321756=0$$
We try to find $\color{blue}{(b_1,b_2)}$. Unfortunately, when substituting the expressions $(c_2,d_2)$ then the values $(c_1,d_1)$ which contain $b_1$ into $M_2=N_2=0$, the variables $(b_1,b_2)$ vanish leaving two equations in only one variable "$a$",
$$M_2 = \gamma_1 a^2+ \gamma_2a+\gamma_3=0$$
$$N_2 = \gamma_4 a^2+ \gamma_5a+\gamma_6=0$$
where the $\gamma_k$ are numerical constants. This is a problem since this generally does not lead to a common root $a$.
Conclusion: In the nonic transformation, it ended with 2 quadratics in 2 variables which is solvable. In this octic version, it ended in 2 quadratics in just 1 variable (with no common root), so the octic transformation is illusory and can't remove four terms $C_1=C_2=C_3=C_4=0$ at once.