Very much parallel to the evaluation in Evaluating $\int_1^{\sqrt2} \frac{\tanh^{-1}(\sqrt{2-x^2})}{1+x} dx$
$$ x=\sqrt{2}\sin y,$$ $$dx = \sqrt{2}\cos y dy,$$
$$
\int_{1}^{\surd 2} \frac{\coth^{-1}(x)}{(1+x)\sqrt{2-x^2}}dx
$$
$$
=\surd 2 \int_{\pi/4}^{\pi/2} \frac{\coth^{-1}(\sqrt{2}\sin y)}{(1+\sqrt{2}\sin y)\sqrt{2-2\sin^2 y}}\cos y dy
$$
$$
=\int_{\pi/4}^{\pi/2} \frac{\coth^{-1}(\sqrt{2}\sin y)}{(1+\sqrt{2}\sin y)\sqrt{1-\sin^2 y}}\cos y dy
$$
$$
=\int_{\pi/4}^{\pi/2} \frac{\coth^{-1}(\sqrt{2}\sin y)}{1+\sqrt{2}\sin y} dy
$$
$$
=\int_0^{\pi/4} \frac{\coth^{-1}(\sqrt{2}\sin (y+\pi/4))}{1+\sqrt{2}\sin (y+\pi/4)} dy
$$
$$
=\int_0^{\pi/4} \frac{\coth^{-1}(\sin y+\cos y)}{1+\sin y+\cos y} dy
$$
$$
=\frac12 \int_0^{\pi/2} \frac{\coth^{-1}(\sin y+\cos y)}{1+\sin y+\cos y} dy
$$
$$
= \frac14 \int_0^{\pi/2} \frac{\ln\frac{1+\sin y+\cos y}{\sin y+\cos y-1)}}{1+\sin y+\cos y} dy
$$
$$y=2\arctan z, dy = 2/(1+z^2)dz,$$
$$1+\sin y+\cos y = 2(z+1)/(1+z^2),$$
$$\sin y+\cos y -1= -2z(z-1)/(1+z^2).$$
$$
= \frac14 \int_0^1 \frac{\ln\frac{z+1}{z(1-z)}}{2(z+1)/(1+z^2)} \frac{2}{1+z^2}dz
$$
$$
= \frac14 \int_0^1 \frac{\ln\frac{z+1}{z(1-z)}}{z+1} dz
= \frac14 \int_0^1 \frac{\ln\frac{z+1}{z}}{z+1} dz
+ \frac14 \int_0^1 \frac{\ln\frac{1}{1-z}}{z+1} dz
$$
where
$$
\int_0^1 \frac{\ln\frac{z+1}{z}}{z+1} dz
=\frac{\pi^2}{12}+\frac12\ln^2 2;
$$
$$
\int_0^1 \frac{\ln\frac{1}{1-z}}{z+1} dz
=\frac{\pi^2}{12}-\frac12\ln^2 2.
$$