I am struggling to solve this exercise.
Let $I\subset\mathbb{R}$ be an interval (whether open or closed, bounded or unbounded, etc.), and let $\phi:\mathbb{R}\rightarrow\mathbb{R}$ be a twice differentiable function such that $\forall x\in \mathbb{R}\setminus I\;\;\phi(x)=0$, $\forall x\in I\;\;\phi(x)\ge 0$. Prove that $$\forall x\in I\;\;\phi(x)>0\Rightarrow\frac{(\phi'(x))^{2}}{2\phi(x)}\le \max_{y\in\mathbb{R}}(|\phi''(y)|)$$
Because $\phi$ and $\phi'$ are continuous in $\mathbb{R}$, I know that both $\phi$ and $\phi'$ valued at the lower/upper limit(s) of $I$ return $0$.
I guess I have to use either Cauchy's, Taylor's, or L'Hôpital's theorem somehow but I am stuck in a rut. No other information is given regarding $\phi$.