Background
Looking for an approximated uniform solution for:
$$\epsilon y''+xy'+xy=0, \quad y(-1)=e, \quad y(1)=\frac{2}{e}$$
I found the following
- Outer solutions:
$$y^{outer}_{left}(x)=e^{-x},\quad y^{outer}_{right}(x)=2e^{-x}$$

- Matching at $$y^{match}_{left}=1,\quad y^{match}_{right}=2$$
- Inner solutions:
$$y_{inner}=\frac{1}{\sqrt{2\pi}}\int_0^\frac{x}{\epsilon}e^{-\frac{t^2}{2}}dt+\frac{3}{2}$$

Question
How to construct $y_{unif}$?
Attempt
This discussion seems to conclude that $$y_{\rm unif}=\frac{y_{\rm out}^{\rm left}+y_{\rm out}^{\rm right}}2+\left(y_{\rm in}-\frac{y_{\rm match}^{\rm left}+y_{\rm match}^{\rm right}}2\right) $$ However, plugging the above results, $y_{unif}$ seems to be wrong: $$y_{unif}(-1)=\frac{e+2e}{2}+1-\left(\frac{1+2}{3}\right)=1.5e$$ Since it is originally required that $y(-1)=e$, we find that: $$y(-1)\neq y_{unif}(-1)$$

