Let $|t|\geqslant 3$. I don't know the bound for $L$-functions when $\chi$ is a primitive character modulo $q$. It seems to me that $$\zeta(\tfrac{1}{2}+it)\ll_{\varepsilon} |t|^{1/6+\varepsilon}$$ and similarly $$L(\tfrac{1}{2}+it,\chi)\ll_{\varepsilon} (q|t|)^{1/6+\varepsilon}\;\text{ and } \;\sum_{\chi(q)}\int_{|t|\leqslant T} |L(\frac{1}{2}+it,\chi)|^4dt\ll_{\varepsilon} (qT)^{1+\varepsilon}.$$
In Titschmarsh book, $\mu(\sigma)$ defined as an infimum of $\xi$ for $\zeta(\sigma+it)\ll |t|^{\xi}$, states that $\mu(\sigma)\leqslant \frac{1}{2}-\frac{\sigma}{2}$ if $\sigma\in [1/2,1-\varepsilon]$. I want to bound $$L(\sigma+it,\chi)\ll_{\varepsilon} (q|t|)^{1/6+\varepsilon}\;\text{ and } \;\sum_{\chi(q)}\int_{|t|\leqslant T} |L(\sigma+it,\chi)|^4dt\ll_{\varepsilon} (qT)^{1+\varepsilon}$$ for all $\sigma\geqslant 1/2$. Is it possible for these bounds for $\sigma>1/2$? Or how to obtain the bound in terms of $\sigma$? Shouldn't this holds for all $\sigma>1/2$ since it is greater than $1/2$?