Solve $|x-1|+|3x-1|=5$
By definition of absolute value:
$|x-1|=\begin{cases} -x+1, &\text{if $x<1$} \\ \ \ \ x-1, &\text{if $x \geq1$} \end{cases}$
$|3x-1|=\begin{cases} -3x+1, &\text{if $x<\frac{1}{3}$} \\ \ \ \ 3x-1, &\text{if $x \geq \frac{1}{3}$} \end{cases}$
For $x<\frac{1}{3}$: $|x-1|+|3x-1|=5 \Rightarrow(-x+1)+(-3x+1)=5 \Rightarrow x=\frac{-3}{4}$
For $\frac{1}{3} \leq x < 1$:$|x-1|+|3x-1|=5 \Rightarrow (-x+1)+(3x-1)=5 \Rightarrow x=\frac{5}{2}$
For $x \geq 1$: $(x-1)+(3x-1)=5 \Rightarrow x=\frac{7}{4}$
The answer is $x=\frac{-3}{4}, \frac{7}{4}$.
My question: $x=\frac{5}{2}$ is not a solution because it is not in the domain of $\frac{1}{3} \leq x < 1$. So does this mean when $\frac{1}{3} \leq x < 1$, there is no solution to $|x-1|+|3x-1|=5$? If so, what does $x=\frac{5}{2}$ mean? How did this value come about? I guess I am saying if no solution exists, why am I able to compute a numerical value for $x$ despite it being wrong? Or to put it another way, by just using the definition of absolute value, this question is literally telling me when $\frac{1}{3} \leq x < 1$, $x=\frac{5}{2}$, a contradiction.
