Can someone give me a hint on how to prove the following claim? I don't know how to start the proof.
$$\dfrac{\pi}{4}=1+ \cfrac{1}{3- \cfrac{3\cdot 4}{1- \cfrac{2 \cdot 3}{3- \cfrac{5 \cdot 6}{1-\cfrac{4 \cdot 5}{\ddots}}}}}$$
Can someone give me a hint on how to prove the following claim? I don't know how to start the proof.
$$\dfrac{\pi}{4}=1+ \cfrac{1}{3- \cfrac{3\cdot 4}{1- \cfrac{2 \cdot 3}{3- \cfrac{5 \cdot 6}{1-\cfrac{4 \cdot 5}{\ddots}}}}}$$
Stern (1833)$^\dagger$ derived the following relation between infinite products and infinite continued fractions (by transforming the product into a series, then converting the series into a continued fraction): $${d_1\over e_1}\cdot{d_2\over e_2}\cdot{d_3\over e_3}\cdots\ \ =\\[3ex] 1+{d_1-e_1\over e_1-}\ {(d_2-e_2)d_1e_1\over(d_1d_2-e_1e_2)-}\ {(d_1-e_1)(d_3-e_3)d_2e_2\over(d_2d_3-e_2e_3)-}\dots\ {(d_{m-1}-e_{m-1})(d_{m+1}-e_{m+1})d_me_m\over(d_md_{m+1}-e_me_{m+1})-}\dots$$ where on the RHS I've used the common notation for infinite continued fractions $$b_0\pm{a_1\over b_1\pm}\ {a_2\over b_2\pm}\ {a_3\over b_3\pm}\cdots\ \ :=\ \ b_0 \pm \cfrac{a_1}{b_1 \pm \cfrac{a_2}{b_2 \pm \cfrac{a_3}{b_3 \pm \ddots\,}}}$$
As an example application, Stern wrote the Wallis product as $${\pi\over 2}=\frac{2}{3} \cdot \frac{2}{1} \cdot \frac{4}{5} \cdot \frac{4}{3} \cdot \frac{6}{7} \cdot \frac{6}{5} \cdots $$ from which the above relation gives the continued fraction $${\pi\over 2}=1-{1\over3-}\ {2\cdot3\over1+}\ {1\cdot2\over3+}\ {4\cdot5\over1+}\ {3\cdot4\over3+}\ {6\cdot7\over1+}\cdots $$ However, we can also write $${\pi\over 4}=\frac{4}{3} \cdot \frac{2}{3} \cdot \frac{6}{5} \cdot \frac{4}{5} \cdot \frac{8}{7} \cdot \frac{6}{7} \cdots$$ from which the relation yields $${\pi\over 4}=1+{1\over3-}\ {3\cdot4\over1-}\ {2\cdot3\over3-}\ {5\cdot6\over1-}\ {4\cdot5\over3-}\ {7\cdot8\over1-}\cdots $$
$^\dagger$ M. Stern. "Theorie der Kettenbrüche und ihre Anwendung. (Fortsetzung)." Journal für die reine und angewandte Mathematik 10 (1833): 241-274. Free access (in German). See esp. pp.266ff. Note that Stern's notation for our $b_0\pm{a_1\over b_1\pm}\ {a_2\over b_2\pm}\ {a_3\over b_3\pm}\cdots\ \ $ is $\ \ F(b_0\pm a_1:b_1\pm a_2:b_2\pm\cdots).$
Another source for this is Chrystal's Algebra: an elementary text-book, Part II (1906), which carries out a similar development on pp.515-517, and cites Stern (1833); however, Chrystal chooses to write the result in the (equivalent) form
$${d_1\over e_1}\cdot{d_2\over e_2}\cdot{d_3\over e_3}\cdots\ \ =\\[3ex]{d_1\over e_1-}\ {(d_2-e_2)e_1\over d_2-}\ {(d_3-e_3)d_2e_2\over(d_2d_3-e_2e_3)-}\ {(d_2-e_2)(d_4-e_4)d_3e_3\over(d_3d_4-e_3e_4)-}\dots\ {(d_{m-1}-e_{m-1})(d_{m+1}-e_{m+1})d_me_m\over(d_md_{m+1}-e_me_{m+1})-}\dots
$$
which is less suited to obtaining the OP's continued fraction.