Few days ago, I met a complicated integral in a youtube $$ I=\int_0^{\infty} \frac{x^2(x-1)}{\left(x^2+1\right)^3 \ln x} d x, $$ I tackled it by transforming it into a double integral $$ \begin{aligned} I&=\int_0^{\infty} \frac{x^2}{\left(x^2+1\right)^3} \int_0^1 x^a d a d x \\ & =\int_0^1\left( \underbrace{ \int_0^{\infty} \frac{x^{a+2}}{\left(x^2+1\right)^3} d x}_{J} \right) d a \end{aligned} $$ Letting $y=\frac{1}{x^2+1}$ transforms $J$ into a beta function $$ \begin{aligned} J & =\frac{1}{2} \int_0^1 y^{\frac{1}{2}-\frac{a}{2}}(1-y)^{\frac{a}{2}+\frac{1}{2}} d y \\ & =\frac{1}{2} B\left(\frac{3-a}{2}, \frac{3+a}{2}\right)\\&=\frac{1}{2} \frac{\Gamma\left(\frac{3-a}{2}\right) \Gamma\left(\frac{3+a}{2}\right)}{\Gamma(3) } \\ & =\frac{1}{4} \cdot \frac{1-a}{2} \cdot \Gamma\left(\frac{1-a}{2}\right) \cdot \frac{1+a}{2}\cdot \Gamma\left(\frac{1+a}{2}\right)\\&=\frac\pi {16}\left(1-a^2\right)\sec\left( \frac{\pi a}{2} \right) \end{aligned} $$ where the last steps use $\Gamma(1+x)=x\Gamma(x)$ and the reflection property of Gamma function.
Now integrating back, $$ \begin{aligned} I & =I(1)-I(0) \\ & = \frac{\pi}{16}\int_0^1\left(1-a^2\right) \sec \left(\frac{\pi a}{2}\right) d a \end{aligned} $$ Via integration by parts, we have $$ \begin{aligned} \int_0^1\left(1-a^2\right) \sec \left(\frac{\pi a}{2}\right) d a = & \frac{2}{\pi} \int_0^1\left(1-a^2\right) d\left(\ln \left(\sec \frac{\pi a}{2}+\tan \frac{\pi a}{2}\right)\right) \\ = & \frac{4}{\pi} \int_0^1 a \ln \left(\sec \frac{\pi a}{2}+\tan \frac{\pi a}{2}\right) d a \\ = & \frac{16}{\pi^3} \int_0^{\frac{\pi}{2}} x \ln (\sec x+\tan x) d x ,\quad \textrm{ where }x=\frac{\pi a}{2} \\=& \frac{16}{\pi^3} \left( \underbrace{ \int_0^{\frac{\pi}{2}}x \ln (1+\sin x)dx}_{K} - \underbrace{ \int_0^{\frac{\pi}{2}} x \ln (\cos x)d x}_{L} \right) \end{aligned} $$
$$ \begin{aligned} K & =\int_0^{\frac{\pi}{2}} x \ln (1+\sin x) d x \\ & =\int_0^{\frac{\pi}{2}}\left(\frac{\pi}{2}-x\right) \ln (1+\cos x) d x \\ & =\frac{\pi}{2} \int_0^{\frac{\pi}{2}} \ln (1+\cos x) d x-\int_0^{\frac{\pi}{2}} x \ln (1+\cos x) d x \end{aligned} $$ $$ \begin{aligned} \int_0^{\frac{\pi}{2}} \ln (1+\cos x) d x=&\int_0^{\frac{\pi}{2}} \ln \left(2 \cos ^2 \frac{x}{2}\right) d x \\ = & \int_0^{\frac{\pi}{2}} \ln 2 d x+2 \int_0^{\frac{\pi}{2}} \ln \left(\cos \frac{x}{2}\right) d x \\ = & \frac{\pi}{2} \ln 2+4 \int_0^\frac \pi4 \ln (\cos x) d x \cdots (*)\\ = & \frac{\pi}{2} \ln 2+2 G-\pi \ln 2 \\ = & 2 G-\frac{\pi}{2} \ln 2 \end{aligned} $$ where $(*)$ use the result obtained in the post.
$$ \begin{aligned}\int_0^{\frac{\pi}{2}} x \ln (1+\cos x) d x = & \int_0^{\frac{\pi}{2}} x \ln \left(2 \cos ^2 \frac{x}{2}\right) d x \\ = & \frac{\pi^2}{8} \ln 2 +2 \int_0^{\frac{\pi}{2}} x \ln \left(\cos \frac{x}{2}\right) d x \\ = & \frac{\pi^2}{8} \ln 2 +8 \int_0^{\frac{\pi}{4}} x \ln (\cos x) d x \\ = & \frac{\pi^2}{8} \ln 2 +8 \cdot \frac{1}{128}\left(16 \pi G-21 \zeta(3)-4 \pi^2 \ln 2\right) \\ = & \frac{\pi^2}{8} \ln 2 +\pi G-\frac{21}{16} \zeta(3)-\frac{\pi^2}{4} \ln 2 \\ = & \pi G-\frac{21}{16} \zeta(3)-\frac{\pi^2}{8} \ln 2 \end{aligned} $$ $$ \boxed{K=\frac{21}{16} \zeta(3) -\frac{\pi^2}{8} \ln 2} $$
For the integral $L$, using the result obtained in the post, we have $$ \boxed{L=-\frac{7\zeta(3)} {16} -\frac{\pi^2}{8} \ln 2} $$
Plugging back yields $$ \boxed{I=\frac{7 \zeta(3)}{4 \pi^2}} $$
My Question:
Do we have any simpler method to deal with the integral $I$?
Your comments and alternative methods are highly appreciated.