i'd like to prove that $$\mathbb{E}\Big[\int_t^T n e^{-n(s-t)} L_s ds | \mathcal{F}_t\Big] \underset{n \rightarrow +\infty}{\longrightarrow} L_t$$ where $L$ is a progressive process such that $$\mathbb{E}[\underset{s \in [0,T]}{\sup} |L_s|^2] < +\infty.$$ (this question comes from a step in Pham book where existence of RBSDE is proven)
My idea is to use conditional dominated convergence theorem: $$\Big| \int_t^T n e^{-n(s-t)} L_s ds \Big| \leq \underset{s \in [0,T]}{\sup} |L_s| (1-e^{-n(T-t)}) \leq \underset{s \in [0,T]}{\sup} |L_s| \in L^1$$
and from integration by part formula (assuming i can use it, see question 1)
$$d(e^{-n(s-t)}L_s) = -ne^{-n(s-t)}L_sds + e^{-n(s-t)}dL_s,$$
so
$$\int_t^T n e^{-n(s-t)} L_s ds = L_t - e^{-n(T-t)}L_T + \int_t^T e^{-n(s-t)}dL_s \underset{n \rightarrow +\infty}{\longrightarrow} L_t.$$
I have two question:
- Is it defined the object $\int_t^T e^{-n(s-t)}dL_s$? I'm not sure one could assume L is a semi-martingale.
- How to prove that $\int_t^T e^{-n(s-t)}dL_s \rightarrow 0$?
- If all of this is wrong, how should i prove the fact?
Thank you for your help!