1

Is the following statement true? I have tried to prove it for a while, but I started to doubt its correctness.

Given a sequence of complex numbers $\{a_k\}_{k\in\mathbb{N}}$, suppose $\limsup_{k\rightarrow\infty} |a_k|^{\frac{1}{k}}=\frac{1}{R}\in\mathbb{R}$, then $\limsup_{k\rightarrow \infty}|a_k|^{\frac{k}{k(k-1)}}=\frac{1}{R}$ as well.

To give some background of my question, I am trying to understand this post. Showing the radius of convergence for a power series is equal to the radius of convergence for its derivative Check its first answer and comment section for details.

Appreciate it!

RobPratt
  • 50,938
Derek Pan
  • 127
  • @ Riemann Thanks for providing the resource. That resource answers my question already. I appreciate it a lot! – Derek Pan Jan 10 '25 at 02:00

1 Answers1

1

The question boils down to the following statement.

Fact 1: If $\lim_{k\rightarrow\infty}y_k =y\in\mathbb{R}$ and $\limsup_{k\rightarrow \infty}x_k=x\in\mathbb{R}$, then $\limsup_{k\rightarrow \infty}x_k^{y_k}=(\limsup_{k\rightarrow \infty} x_k)^{\lim_{k\rightarrow \infty}y_k}$

Fact 2: Given $f:\mathbb{R}\mapsto \mathbb{R}$ and $\{x_k\}_{k\in\mathbb{R}}$ such that $\limsup_{k\rightarrow \infty}x_k=x\in\mathbb{R}$, if $f$ is continuous and increasing, then $\limsup_{k\rightarrow \infty} f(x_k) = f(\limsup_{k\rightarrow \infty} x_k)$.

Fact 2 is needed to prove Fact 1.

Proof of Fact 2, Source:

Prove that $ \limsup f(x_n) = f(\limsup x_n) $

Show that $f(\sup(A))= \sup(f(A))$.

Since $f$ is continuous, and $\limsup_{k\rightarrow \infty}x_k=\lim_{k\rightarrow \infty} \sup_{n\geq k}x_n= x\in\mathbb{R}$, hence \begin{equation} \lim_{k\rightarrow \infty} f(\sup_{n\geq k}x_n)=f(\lim_{k\rightarrow \infty} \sup_{n\geq k} x_n)=f(x) \end{equation}

Moreover, since $f$ is increasing, then for $k\in\mathbb{N}$ large enough, $f(\sup_{n\geq k}x_n)\geq f(x_n)$ for all $n\geq k$, thus \begin{equation}f(\sup_{n\geq k}x_n)\geq \sup_{n\geq k} f(x_n)\end{equation}

In other hand, let $z_k = \sup_{n\geq k} x_n\in\mathbb{R}$ for $k$ large enough, for every $m\in\mathbb{N}$, there exists $x_{n_m} \in \{x_n: n\geq k\}$ such that $z_k-\frac{1}{m}<x_{n_m}\leq z_k$. By Squeeze theorem, $\lim_{m\rightarrow \infty} x_{n_m} = z_k$. Since $f$ is continuous, then $\lim_{m\rightarrow \infty} f(x_{n_m})=f(z_k)$.

Therefore, $\forall\,\varepsilon>0$, there exists $M\in \mathbb{N}$ such that $\forall\,m\geq M$, $|f(x_{n_m}) - f(z_k)|<\varepsilon$. So, $\forall\,m\geq M$, \begin{equation} f(z_k) = f(z_k) - f(x_{n_m}) + f(x_{n_m}) \leq |f(z_k) - f(x_{n_m})| + f(x_{n_m})<\varepsilon+f(x_{n_m})\leq\varepsilon+\sup_{n\geq k} f(x_n) \end{equation} Hence, $\forall\, \varepsilon >0$, $f(\sup_{n\geq k}x_n)<\varepsilon + \sup_{n\geq k} f(x_n)$. Therefore, \begin{equation}f(\sup_{n\geq k}x_n) \leq \sup_{n\geq k} f(x_n)\end{equation} Now, we have $f(\sup_{n\geq k}x_n) = \sup_{n\geq k} f(x_n)$.

Consequently, from the first equation, we have \begin{equation} \lim_{k\rightarrow \infty}f(\sup_{n\geq k}x_n) = \lim_{k\rightarrow \infty} \sup_{n \geq k} f(x_n) = \limsup_{k\rightarrow \infty} f(x_k) = f(\limsup_{k\rightarrow \infty} x_k) \end{equation} Q.E.D.

Proof of Fact 1, Source:

$\limsup_{n\to\infty}{a_n}^{b_n}= \limsup_{n\to\infty}{a_n}^{\lim\limits_{n\to\infty}b_n}$ under certian conditions.

lim sup inequality $\limsup ( a_n b_n ) \leq \limsup a_n \limsup b_n $

Notice $e^x$ and $ln(x)$ are increasing and continuous, use Fact 2 in the proof.

\begin{align} (\limsup_{k\rightarrow \infty} x_k)^{\lim_{k\rightarrow \infty} y_k} & = x^{\lim_{k\rightarrow \infty} y_k}\\ & = e^{ln(x) \lim_{k\rightarrow \infty} y_k}\\ & = e^{(\lim_{k\rightarrow \infty} y_k) ln(\limsup_{k\rightarrow \infty} x_k)}\\ & = e^{(\lim_{k \rightarrow \infty} y_k) \limsup_{k \rightarrow \infty} ln(x_k)}\\ & = e^{\limsup_{k \rightarrow \infty} y_k ln(x_k)}\\ & = \limsup_{k \rightarrow \infty} e^{y_k ln(x_k)}\\ & = \limsup_{k \rightarrow \infty} x_k^{y_k} \end{align}

Because of $f(x) = ln(x)$ and $\limsup_{k \rightarrow \infty} x_k = x \in \mathbb{R}$, the fourth equality is implied by Fact 2. The fifth equality is implied by lim sup inequality $\limsup ( a_n b_n ) \leq \limsup a_n \limsup b_n $. Moreover, due to $g(x) = e^x$ and $\limsup_{k\rightarrow \infty} y_k ln(x_k) \in \mathbb{R}$, the sixth equality is also implied by Fact 2. This finishes the proof.

Q.E.D

In this post, given $\limsup_{k\rightarrow \infty} |a_k|^{\frac{1}{k}}\in \mathbb{R}$ and $\lim_{k \rightarrow \infty} \frac{k}{k-1}$, using $|a_k|^{\frac{1}{k-1}} = |a_k|^{\frac{1}{k} \frac{k}{k-1}}$, the result $\limsup_{k\rightarrow \infty}|a_k|^{\frac{1}{k}} = \limsup_{k\rightarrow \infty}|a_k|^{\frac{1}{k} \frac{k}{k-1}}$ is a direct application of Fact 1.

Derek Pan
  • 127