Here is my question:
How to evaluate this integral: \begin{equation}\int_0^1\frac{\ln(\sqrt{x}+\sqrt{x+1})}{\sqrt{1-x^2}}\ dx=\frac{\pi\ln2}{2} \tag{1} \end{equation}
$\textbf{My Attempt:}$
Let $x=\sin\theta$, and we have
\begin{equation} \int_0^{\frac{\pi}{2}}\ln(\sqrt{\sin\theta}+\sqrt{\sin\theta+1})\ d\theta=\frac{\pi}{2}\ln(\sqrt2+1)-\int_0^{\frac{\pi}{2}}\theta\frac{\cos\theta}{\sqrt{\sin\theta}\sqrt{1+\sin\theta}}d\theta \tag{2} \end{equation}
Then I don't know how to continue. So I try the second method to convert it into a double integral. Notice that:
\begin{aligned} \int_0^1\frac{1}{1-x^2}\int_0^x\frac{1}{\sqrt{y}\sqrt{y+1}}dydx &=\int_{0}^{1}\frac{1}{\sqrt{y}\sqrt{y+1}}\int_y^1\frac{1}{\sqrt{1-x^2}}dxdy \\ &=\int_0^1\frac{\arcsin y}{\sqrt{y}\sqrt{y+1}}dy \end{aligned}
and again I cannot proceed with it.
Could anybody give me some hints? Thanks!