Let the sequences $\{a_n\}$ and $\{b_n\}$ satisfy the relation $a_{n+1} = b_n - q a_n$ where $0 < q < 1$, and assume that $\lim\limits_{n\to\infty}b_n = b$. Prove that $\lim\limits_{n\to\infty} a_n$ also exists.
All I can do is to show that $a_{n}$ is bounded:
$\left| b_n \right|\leq M$
$a_{n+1}=\sum_{k=0}^{n-1}{\left( -1 \right)^{k}q^{k}b_{n-k}+\left( -1 \right)^{n}q^{n}a_{1}}$
$\left| a_{n+1} \right|\leq M\left( 1+q+q^{2}+...+q^{n-1} \right)+q\left| a_{1} \right|\leq\frac{M}{1-q}+q\left| a_{1} \right|$
Is there a way to prove that this sequence is monotonic?