First, transform $\sin^nx$ into the form $\sin^nx=\sum_{k=0}^n(a_k\sin kx+b_k\cos kx)$. We only need to calculate $I_{k,m}:=\int_0^\infty\frac{\sin kx}{1+x^m}\mathrm dx$ and $J_{k,m}:=\int_0^\infty\frac{\cos kx}{1+x^m}\mathrm dx$.
First we need to know a formula for the Mellin transform of the $\mathrm{Fox}$-$H$ function:
$$ \int_{0}^{\infty}t^{\eta-1}H_{p,q}^{m,n}\left[\left.\begin{array}{c}(a_{i},\alpha_{i})_{1,p}\\[1mm](b_{j},\beta_{j})_{1,q}\end{array}\right| zt^{\sigma}\right]H_{P,Q}^{M,N}\left[\left.\begin{array}{c}(c_{i},\gamma_{i})_{1,P}\\[1mm](d_{j},\delta_{j})_{1,Q}\end{array}\right|wt\right]\mathrm dt=w^{-\eta}H_{p+Q,q+P}^{m+N,n+M}\left[\left.\begin{array}{c}(a_i,\alpha_i)_{1,n},(1-d_j-\eta\delta_j,\sigma\delta_j)_{1,Q},(a_i,\alpha_i)_{n+1,p}\\[1mm](b_j,\beta_j)_{1,m},(1-c_i-\eta\gamma_i,\sigma\gamma_i)_{1,P},(b_j,\beta_j)_{m+1,q}\end{array}\right| zw^{-\sigma}\right]
$$
The conditions are complex, and will hold by default. This formula only requires the convolution theorem for the Mellin transform, and the Mellin transform of the Fox-H function itself.
Next it's time to move on to the two definite integrals above. First calculate $I_{k,m}$.
It is not difficult to derive the corresponding $\rm Fox$-$H$ functions by means of the hypergeometric functional forms of $\sin kx$ and $\frac{1}{1+x^m}$:
$$
\sin kx=\sqrt{\pi}\,H_{0,2}^{1,0}\left[\left.\begin{array}{c} -\\[1mm](\frac12,1),(0,1) \end{array}\right|\frac{k^2x^2}{4}\right],\quad\frac{1}{1+x^m}=H_{1,1}^{1,1}\left[\left.\begin{array}{c} (1,1)\\[1mm](0,1) \end{array}\right|x^m\right]
$$
Then substituting this we can see that
\begin{aligned}
\int_0^\infty\frac{\sin kx}{1+x^m}\mathrm dx&=\sqrt{\pi}\int_0^\infty H_{0,2}^{1,0}\left[\left.\begin{array}{c} -\\[1mm](\frac12,1),(0,1) \end{array}\right|\frac{k^2x^2}{4}\right]H_{1,1}^{1,1}\left[\left.\begin{array}{c} (1,1)\\[1mm](0,1) \end{array}\right|x^m\right]\mathrm{d}x\\[3mm]
&=({x^2\mapsto x})\frac{\sqrt{\pi}}{2}\int_0^\infty x^{1/2-1}H_{1,1}^{1,1}\left[\left.\begin{array}{c} (1,1)\\[1mm](0,1) \end{array}\right|x^{m/2}\right]H_{0,2}^{1,0}\left[\left.\begin{array}{c} -\\[1mm](\frac12,1),(0,1) \end{array}\right|\frac{k^2x}{4}\right]\mathrm{d}x\\[3mm]
&=\frac{\sqrt\pi}{2}\frac{2}{k}H_{3,1}^{1,2}\left[\left.\begin{array}{c}(1,1),(0,\frac{m}{2}),(\frac12,\frac{m}{2})\\[1mm](0,1)\end{array}\right|\frac{2^m}{k^m}\right]
\end{aligned}
Of course, we can also use the definition of the Fox-H function to transform it into a Meijer-G function, but that doesn't really make much sense.
Similarly, we can pass the $\mathrm Fox$-$H$ functional form of $\cos x$ that
$$
\cos kx=\sqrt{\pi}\,H_{0,2}^{1,0}\left[\left.\begin{array}{c} -\\[1mm](0,1),(\frac12,1) \end{array}\right|\frac{k^2x^2}{4}\right]
$$
Then
\begin{aligned}
\int_0^\infty\frac{\cos kx}{1+x^m}\mathrm dx&=\sqrt{\pi}\int_0^\infty H_{0,2}^{1,0}\left[\left.\begin{array}{c} -\\[1mm](0,1),(\frac12,1) \end{array}\right|\frac{k^2x^2}{4}\right]H_{1,1}^{1,1}\left[\left.\begin{array}{c} (1,1)\\[1mm](0,1) \end{array}\right|x^m\right]\mathrm{d}x\\[3mm]
&=({x^2\mapsto x})\frac{\sqrt{\pi}}{2}\int_0^\infty x^{1/2-1}H_{1,1}^{1,1}\left[\left.\begin{array}{c} (1,1)\\[1mm](0,1) \end{array}\right|x^{m/2}\right]H_{0,2}^{1,0}\left[\left.\begin{array}{c} -\\[1mm](0,1),(\frac12,1) \end{array}\right|\frac{k^2x}{4}\right]\mathrm{d}x\\[3mm]
&=\frac{\sqrt\pi}{2}\frac{2}{k}H_{3,1}^{1,2}\left[\left.\begin{array}{c}(1,1),(\frac12,\frac{m}{2}),(0,\frac{m}{2})\\[1mm](0,1)\end{array}\right|\frac{2^m}{k^m}\right]
\end{aligned}
So going back to the original question, why does $I_k$ have a prettier form at $k=2$? It's simply because in the end we only need to compute $J_{0,2}$ and $J_{2,2}$. While $J_{0,2}$ is a no-brainer, the $\rm Fox$-$H$ function in $J_{2,2}$ can be written directly as the $\rm Meijer$-$G$ function, i.e.
$$J_{2,2}=\frac{\sqrt{\pi}}{2}G_{3,1}^{1,2}\left[\left.\begin{array}{c}0,\frac12,0\\[1mm]0\end{array}\right|1\right]$$
We have the formula for $\rm Meijer$-$G$:
$$G_{3,1}^{1,2}\left[\left.\begin{array}{c}a,a+\frac12,c\\[1mm]a\end{array}\right|z\right]=\pi z^{\frac{1}{4}(2a+2c-3)}\csc((c-a)\pi)\left(I_{a-c+\frac{1}{2}}\left(\frac{2}{\sqrt{z}}\right)-L_{c-a-\frac{1}{2}}\left(\frac{2}{\sqrt{z}}\right)\right)$$
So we can work out that $J_{2,2}=\frac{\sqrt\pi}{e^2}$. But if $k$ odd or $k>2$, $I_k$'s results will all be tedious.