I need help to evaluate:$$I=\int^{\infty}_0 e^{\cos(x)}\sin(x+\sin(x))\frac{xdx}{1+x^2}$$
We have : \begin{align*}e^{\cos(x)}\sin(x+\sin(x))&=\text{Im}\left({e^{ix+e^{ix}}}\right)\\&= \text{Im}\left({\sum_{n=0}^{\infty}\frac{e^{i(n+1)x}}{n!}}\right)\\&= \sum_{n=0}^{\infty}\frac{\sin((n+1)x)}{n!}\end{align*}
Therfore: \begin{align*}I=\sum_{n=0}^{\infty}\frac{1}{n!}\int^{\infty}_0 \frac{x\sin((n+1)x)}{1+x^2}dx\end{align*}
How can we calculate this last integral? Is there another way to evaluate this integral?